A Cauchy-Schwarz type inequality for bilinear integrals on positive measures
HTML articles powered by AMS MathViewer
- by Nils Ackermann
- Proc. Amer. Math. Soc. 133 (2005), 2647-2656
- DOI: https://doi.org/10.1090/S0002-9939-05-08082-2
- Published electronically: April 15, 2005
- PDF | Request permission
Abstract:
If $W\colon \mathbb {R}^n \to [0,\infty ]$ is Borel measurable, define for $\sigma$-finite positive Borel measures $\mu ,\nu$ on $\mathbb {R}^n$ the bilinear integral expression \[ I(W;\mu ,\nu ):=\int _{\mathbb {R}^n}\int _{\mathbb {R}^n}W(x-y) d\mu (x) d\nu (y)\;. \] We give conditions on $W$ such that there is a constant $C\ge 0$, independent of $\mu$ and $\nu$, with \[ I(W;\mu ,\nu )\le C\sqrt {I(W;\mu ,\mu )I(W;\nu ,\nu )}\;. \] Our results apply to a much larger class of functions $W$ than known before.References
- Nils Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z. 248 (2004), no. 2, 423–443. MR 2088936, DOI 10.1007/s00209-004-0663-y
- B. Buffoni, L. Jeanjean, and C. A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), no. 1, 179–186. MR 1145940, DOI 10.1090/S0002-9939-1993-1145940-X
- Branko Grünbaum, Convex polytopes, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR 0226496
- L. Mattner, Strict definiteness of integrals via complete monotonicity of derivatives, Trans. Amer. Math. Soc. 349 (1997), no. 8, 3321–3342. MR 1422615, DOI 10.1090/S0002-9947-97-01966-1
- Zoltán Sasvári, Positive definite and definitizable functions, Mathematical Topics, vol. 2, Akademie Verlag, Berlin, 1994. MR 1270018
- James Stewart, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math. 6 (1976), no. 3, 409–434. MR 430674, DOI 10.1216/RMJ-1976-6-3-409
- Chuanming Zong, Strange phenomena in convex and discrete geometry, Universitext, Springer-Verlag, New York, 1996. MR 1416567, DOI 10.1007/978-1-4613-8481-6
Bibliographic Information
- Nils Ackermann
- Affiliation: Justus-Liebig-Universität, Mathematisches Institut, Arndtstr. 2, D-35392 Giessen, Germany
- Email: nils.ackermann@math.uni-giessen.de
- Received by editor(s): June 18, 2003
- Received by editor(s) in revised form: April 21, 2004
- Published electronically: April 15, 2005
- Communicated by: Andreas Seeger
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2647-2656
- MSC (2000): Primary 26D15; Secondary 43A35, 35J20, 60E15
- DOI: https://doi.org/10.1090/S0002-9939-05-08082-2
- MathSciNet review: 2146210