A note on Weyl’s theorem
HTML articles powered by AMS MathViewer
- by Xiaohong Cao, Maozheng Guo and Bin Meng
- Proc. Amer. Math. Soc. 133 (2005), 2977-2984
- DOI: https://doi.org/10.1090/S0002-9939-05-07676-8
- Published electronically: May 13, 2005
- PDF | Request permission
Abstract:
The Kato spectrum of an operator is deployed to give necessary and sufficient conditions for Browder’s theorem to hold.References
- Slaviša V. Djordjević and Dragan S. Djordjević, Weyl’s theorems: continuity of the spectrum and quasihyponormal operators, Acta Sci. Math. (Szeged) 64 (1998), no. 1-2, 259–269. MR 1632013
- Slaviša V. Djordjević and Young Min Han, Browder’s theorems and spectral continuity, Glasg. Math. J. 42 (2000), no. 3, 479–486. MR 1793814, DOI 10.1017/S0017089500030147
- James K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69. MR 374985, DOI 10.2140/pjm.1975.58.61
- Young Min Han and Slaviša Djordjević, A note on $a$-Weyl’s theorem, J. Math. Anal. Appl. 260 (2001), no. 1, 200–213. MR 1843976, DOI 10.1006/jmaa.2001.7448
- Robin Harte and Woo Young Lee, Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115–2124. MR 1407492, DOI 10.1090/S0002-9947-97-01881-3
- Robin Harte, On Kato non-singularity, Studia Math. 117 (1996), no. 2, 107–114. MR 1367438, DOI 10.4064/sm-117-2-107-114
- Vladimír Müler, On the regular spectrum, J. Operator Theory 31 (1994), no. 2, 363–380. MR 1331783
- Vladimir Rakočević, Operators obeying $a$-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915–919. MR 1030982
- Vladimir Rakočević, On the essential approximate point spectrum. II, Mat. Vesnik 36 (1984), no. 1, 89–97 (English, with Serbo-Croatian summary). MR 880647
- Pierre Saphar, Contribution à l’étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363–384 (French). MR 187095, DOI 10.24033/bsmf.1612
- Ch. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), no. 5, 484–489 (German). MR 1079997, DOI 10.1007/BF01190270
Bibliographic Information
- Xiaohong Cao
- Affiliation: College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China
- Email: xiaohongcao@snnu.edu.cn
- Maozheng Guo
- Affiliation: Department of Mathematics, Peking University, Beijing, 100871, People’s Republic of China
- Bin Meng
- Affiliation: LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, People’s Republic of China
- Received by editor(s): June 3, 2003
- Received by editor(s) in revised form: February 4, 2004
- Published electronically: May 13, 2005
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 2977-2984
- MSC (2000): Primary 47A10, 47A53, 47A55
- DOI: https://doi.org/10.1090/S0002-9939-05-07676-8
- MathSciNet review: 2159776