Ordered fields satisfying Pólya’s theorem
HTML articles powered by AMS MathViewer
- by Zeng Guangxing
- Proc. Amer. Math. Soc. 133 (2005), 2921-2926
- DOI: https://doi.org/10.1090/S0002-9939-05-07856-1
- Published electronically: April 25, 2005
- PDF | Request permission
Abstract:
The purpose of this paper is to characterize ordered fields satisfying Pólya’s theorem on positive representations of polynomials. As a main result, it is proved that an ordered field $(F,\le )$ satisfies Pólya’s theorem if and only if $\le$ is an archimedean ordering and $F$ is a real closed field.References
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- W. Habicht, Über die Zerlegung strikte definiter Formen in Quadrate, Comment. Math. Helv. 12 (1940), 317–322 (German). MR 2837, DOI 10.1007/BF01620655
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- Nathan Jacobson, Lectures in abstract algebra. III, Graduate Texts in Mathematics, No. 32, Springer-Verlag, New York-Heidelberg, 1975. Theory of fields and Galois theory; Second corrected printing. MR 0392906
- E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming, SIAM J. Optim. 12 (2002), no. 4, 875–892. MR 1922500, DOI 10.1137/S1052623401383248
- T. Y. Lam, The theory of ordered fields, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979) Lecture Notes in Pure and Appl. Math., vol. 55, Dekker, New York, 1980, pp. 1–152. MR 584611
- Jesús A. de Loera and Francisco Santos, An effective version of Pólya’s theorem on positive definite forms, J. Pure Appl. Algebra 108 (1996), no. 3, 231–240. MR 1384003, DOI 10.1016/0022-4049(95)00042-9
- G. Pólya, Über positive Darstellung von Polynomen, Vierteljahrsschrift Natur. Ges. in Zürich, 73(1928), 141-145.
- Victoria Powers and Bruce Reznick, A new bound for Pólya’s theorem with applications to polynomials positive on polyhedra, J. Pure Appl. Algebra 164 (2001), no. 1-2, 221–229. Effective methods in algebraic geometry (Bath, 2000). MR 1854339, DOI 10.1016/S0022-4049(00)00155-9
- Alexander Prestel, Lectures on formally real fields, Lecture Notes in Mathematics, vol. 1093, Springer-Verlag, Berlin, 1984. MR 769847, DOI 10.1007/BFb0101548
- Abraham Robinson, Algorithms in algebra, Model theory and algebra (A memorial tribute to Abraham Robinson), Lecture Notes in Math., Vol. 498, Springer, Berlin, 1975, pp. 14–40. MR 0401471
- Markus Schweighofer, An algorithmic approach to Schmüdgen’s Positivstellensatz, J. Pure Appl. Algebra 166 (2002), no. 3, 307–319. MR 1870623, DOI 10.1016/S0022-4049(01)00041-X
Bibliographic Information
- Zeng Guangxing
- Affiliation: Department of Mathematics, Nanchang University, Jiangxi Province, Nanchang 330047, People’s Republic of China
- Email: zenggx@ncu.edu.cn
- Received by editor(s): March 3, 2004
- Received by editor(s) in revised form: June 10, 2004
- Published electronically: April 25, 2005
- Additional Notes: This work was partially supported by a National Key Basic Research Project of China (Grant No. 2004CB318003).
- Communicated by: Lance W. Small
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2921-2926
- MSC (2000): Primary 12J15; Secondary 12D15
- DOI: https://doi.org/10.1090/S0002-9939-05-07856-1
- MathSciNet review: 2159770