Fuglede’s conjecture fails in dimension 4
HTML articles powered by AMS MathViewer
- by Máté Matolcsi
- Proc. Amer. Math. Soc. 133 (2005), 3021-3026
- DOI: https://doi.org/10.1090/S0002-9939-05-07874-3
- Published electronically: March 24, 2005
- PDF | Request permission
Abstract:
In this note we modify a recent example of Tao and give an example of a set $\Omega \subset \mathbb {R}^4$ such that $L^2(\Omega )$ admits an orthonormal basis of exponentials $\{\frac {1}{|\Omega |^{1/2}}e^{2\pi i \langle x, \xi \rangle }\}_{\xi \in \Lambda }$ for some set $\Lambda \subset \mathbb {R}^4$, but which does not tile $\mathbb {R}^4$ by translations. This shows that one direction of Fuglede’s conjecture fails already in dimension 4. Some common properties of translational tiles and spectral sets are also proved.References
- Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101–121. MR 0470754, DOI 10.1016/0022-1236(74)90072-x
- Bent Fuglede, Orthogonal exponentials on the ball, Expo. Math. 19 (2001), no. 3, 267–272. MR 1852076, DOI 10.1016/S0723-0869(01)80005-0
- Alex Iosevich and Steen Pedersen, Spectral and tiling properties of the unit cube, Internat. Math. Res. Notices 16 (1998), 819–828. MR 1643694, DOI 10.1155/S1073792898000506
- Alex Iosevich, Nets Hawk Katz, and Terry Tao, Convex bodies with a point of curvature do not have Fourier bases, Amer. J. Math. 123 (2001), no. 1, 115–120. MR 1827279, DOI 10.1353/ajm.2001.0003
- Alex Iosevich, Nets Katz, and Terence Tao, The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett. 10 (2003), no. 5-6, 559–569. MR 2024715, DOI 10.4310/MRL.2003.v10.n5.a1
- Alex Iosevich and Mischa Rudnev, A combinatorial approach to orthogonal exponentials, Int. Math. Res. Not. 50 (2003), 2671–2685. MR 2017246, DOI 10.1155/S1073792803208126
- Mihail N. Kolountzakis, Non-symmetric convex domains have no basis of exponentials, Illinois J. Math. 44 (2000), no. 3, 542–550. MR 1772427
- Mihail N. Kolountzakis and Michael Papadimitrakis, A class of non-convex polytopes that admit no orthonormal basis of exponentials, Illinois J. Math. 46 (2002), no. 4, 1227–1232. MR 1988260
- M. Kolountzakis, The study of translational tiling with Fourier analysis, Proceedings of the Milano Conference on Fourier Analysis and Convexity, to appear.
- I. Łaba, Fuglede’s conjecture for a union of two intervals, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2965–2972. MR 1840101, DOI 10.1090/S0002-9939-01-06035-X
- I. Łaba, The spectral set conjecture and multiplicative properties of roots of polynomials, J. London Math. Soc. (2) 65 (2002), no. 3, 661–671. MR 1895739, DOI 10.1112/S0024610702003149
- Jeffrey C. Lagarias, James A. Reeds, and Yang Wang, Orthonormal bases of exponentials for the $n$-cube, Duke Math. J. 103 (2000), no. 1, 25–37. MR 1758237, DOI 10.1215/S0012-7094-00-10312-2
- Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2-3, 251–258. MR 2067470, DOI 10.4310/MRL.2004.v11.n2.a8
Bibliographic Information
- Máté Matolcsi
- Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127 H-1364 Budapest, Hungary
- Email: matomate@renyi.hu
- Received by editor(s): May 21, 2004
- Published electronically: March 24, 2005
- Additional Notes: The author was supported by Hungarian Research Funds OTKA-T047276, OTKA-F049457, OTKA-T049301
- Communicated by: Andreas Seeger
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 3021-3026
- MSC (2000): Primary 42B99; Secondary 20K01
- DOI: https://doi.org/10.1090/S0002-9939-05-07874-3
- MathSciNet review: 2159781