Blocks with $p$-power character degrees
HTML articles powered by AMS MathViewer
- by Gabriel Navarro and Geoffrey R. Robinson
- Proc. Amer. Math. Soc. 133 (2005), 2845-2851
- DOI: https://doi.org/10.1090/S0002-9939-05-07915-3
- Published electronically: April 19, 2005
- PDF | Request permission
Abstract:
Let $B$ be a $p$-block of a finite group $G$. If $\chi (1)$ is a $p$-power for all $\chi \in \operatorname {Irr}(B)$, then $B$ is nilpotent.References
- Antal Balog, Christine Bessenrodt, Jørn B. Olsson, and Ken Ono, Prime power degree representations of the symmetric and alternating groups, J. London Math. Soc. (2) 64 (2001), no. 2, 344–356. MR 1853455, DOI 10.1112/S0024610701002356
- Richard Brauer, Investigations on group characters, Ann. of Math. (2) 42 (1941), 936–958. MR 5731, DOI 10.2307/1968775
- Michel Broué and Lluís Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), no. 2, 117–128. MR 558864, DOI 10.1007/BF01392547
- I. M. Isaacs and Stephen D. Smith, A note on groups of $p$-length $1$, J. Algebra 38 (1976), no. 2, 531–535. MR 393215, DOI 10.1016/0021-8693(76)90236-2
- Burkhard Külshammer and Lluís Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), no. 1, 17–71. MR 1069239, DOI 10.1007/BF01233419
- G. Malle and A. E. Zalesskiĭ, Prime power degree representations of quasi-simple groups, Arch. Math. (Basel) 77 (2001), no. 6, 461–468. MR 1879049, DOI 10.1007/PL00000518
- G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
- John G. Thompson, Normal $p$-complements and irreducible characters, J. Algebra 14 (1970), 129–134. MR 252499, DOI 10.1016/0021-8693(70)90116-X
- Atumi Watanabe, On nilpotent blocks of finite groups, J. Algebra 163 (1994), no. 1, 128–134. MR 1257309, DOI 10.1006/jabr.1994.1008
Bibliographic Information
- Gabriel Navarro
- Affiliation: Departament d’Àlgebra, Universitat de València, 46100 Burjassot, València, Spain
- MR Author ID: 129760
- Email: gabriel.navarro@uv.es
- Geoffrey R. Robinson
- Affiliation: School of Mathematics and Statistics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Address at time of publication: Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
- Email: grr@for.mat.bham.ac.uk, grr@maths.abdn.ac.uk
- Received by editor(s): May 25, 2004
- Published electronically: April 19, 2005
- Communicated by: Jonathan I. Hall
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 2845-2851
- MSC (2000): Primary 20C20
- DOI: https://doi.org/10.1090/S0002-9939-05-07915-3
- MathSciNet review: 2159761