Porosity and hypercyclic operators
HTML articles powered by AMS MathViewer
- by Frédéric Bayart
- Proc. Amer. Math. Soc. 133 (2005), 3309-3316
- DOI: https://doi.org/10.1090/S0002-9939-05-07842-1
- Published electronically: May 9, 2005
- PDF | Request permission
Abstract:
We study if the set of hypercyclic vectors of a hypercyclic operator is the complement of a $\sigma$-porous set. This leads to interesting results for both points of view: a limitation of the size of hypercyclic vectors, and new examples of first category sets which are not $\sigma$-porous.References
- G.D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières, C.R. Acad. Sci. Paris 189 (1929), 473-475.
- Paul S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), no. 3, 845–847. MR 1148021, DOI 10.1090/S0002-9939-1993-1148021-4
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- Paul R. Hurst, A model for invertible composition operators on $H^2$, Proc. Amer. Math. Soc. 124 (1996), no. 6, 1847–1856. MR 1307532, DOI 10.1090/S0002-9939-96-03228-5
- M. E. Mera, M. Morán, D. Preiss, and L. Zajíček, Porosity, $\sigma$-porosity and measures, Nonlinearity 16 (2003), no. 1, 247–255. MR 1950786, DOI 10.1088/0951-7715/16/1/315
- Eric Nordgren, Peter Rosenthal, and F. S. Wintrobe, Invertible composition operators on $H^p$, J. Funct. Anal. 73 (1987), no. 2, 324–344. MR 899654, DOI 10.1016/0022-1236(87)90071-1
- C. J. Read, The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63 (1988), no. 1, 1–40. MR 959046, DOI 10.1007/BF02765019
- S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22. MR 241956, DOI 10.4064/sm-32-1-17-22
- Héctor N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993–1004. MR 1249890, DOI 10.1090/S0002-9947-1995-1249890-6
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- L. Zajíček, Porosity and $\sigma$-porosity, Real Anal. Exchange 13 (1987/88), no. 2, 314–350. MR 943561, DOI 10.2307/44151885
- L. Zajíček, Small non-$\sigma$-porous sets in topologically complete metric spaces, Colloq. Math. 77 (1998), no. 2, 293–304. MR 1628994, DOI 10.4064/cm-77-2-293-304
Bibliographic Information
- Frédéric Bayart
- Affiliation: Laboratoire Bordelais d’Analyse et de Géométrie, UMR 5467, Université Bordeaux 1, 351 Cours de la Libération, F-33405 Talence cedex, France
- MR Author ID: 683115
- Email: bayart@math.u-bordeaux.fr
- Received by editor(s): January 27, 2004
- Received by editor(s) in revised form: June 17, 2004
- Published electronically: May 9, 2005
- Communicated by: Joseph A. Ball
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 3309-3316
- MSC (2000): Primary 47A16, 28A05
- DOI: https://doi.org/10.1090/S0002-9939-05-07842-1
- MathSciNet review: 2161154