Singular perturbation problems for time-reversible systems
HTML articles powered by AMS MathViewer
- by Claudio A. Buzzi, Paulo Ricardo da Silva and Marco Antonio Teixeira
- Proc. Amer. Math. Soc. 133 (2005), 3323-3331
- DOI: https://doi.org/10.1090/S0002-9939-05-07894-9
- Published electronically: May 9, 2005
- PDF | Request permission
Abstract:
In this paper singularly perturbed reversible vector fields defined in $R^n$ without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.References
- Freddy Dumortier and Robert Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc. 121 (1996), no. 577, x+100. With an appendix by Cheng Zhi Li. MR 1327208, DOI 10.1090/memo/0577
- Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, DOI 10.1016/0022-0396(79)90152-9
- P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations 92 (1991), no. 2, 252–281. MR 1120905, DOI 10.1016/0022-0396(91)90049-F
- W. G. Hoover, H. A. Posch, B. L. Holian, M. J. Gillan, M. Mareshal and C. Massobrio. Dissipative irreversibility from Nosé’s reversible mechanics, Mol. Simulation 1, 79-86, 1987.
- Jeroen S. W. Lamb and John A. G. Roberts, Time-reversal symmetry in dynamical systems: a survey, Phys. D 112 (1998), no. 1-2, 1–39. Time-reversal symmetry in dynamical systems (Coventry, 1996). MR 1605826, DOI 10.1016/S0167-2789(97)00199-1
- M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions, SIAM J. Math. Anal. 33 (2001), no. 2, 286–314. MR 1857972, DOI 10.1137/S0036141099360919
- M. Krupa and P. Szmolyan, Extending slow manifolds near transcritical and pitchfork singularities, Nonlinearity 14 (2001), no. 6, 1473–1491. MR 1867088, DOI 10.1088/0951-7715/14/6/304
- J. A. G. Roberts and G. R. W. Quispel, Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep. 216 (1992), no. 2-3, 63–177. MR 1173588, DOI 10.1016/0370-1573(92)90163-T
Bibliographic Information
- Claudio A. Buzzi
- Affiliation: IBILCE, Universidade Estadual Paulista, São José do Rio Preto, SP, CEP 15054-000, Brazil
- Email: buzzi@mat.ibilce.unesp.br
- Paulo Ricardo da Silva
- Affiliation: IBILCE, Universidade Estadual Paulista, São José do Rio Preto, SP, CEP 15054-000, Brazil
- MR Author ID: 785140
- Email: prs@mat.ibilce.unesp.br
- Marco Antonio Teixeira
- Affiliation: Instituto de Matemática, Estatística e Computação Cientıf̃ica, Universidade Estadual de Campinas, Campinas, SP, CEP 13081-970, Brazil
- Email: teixeira@ime.unicamp.br
- Received by editor(s): March 4, 2004
- Received by editor(s) in revised form: June 21, 2004
- Published electronically: May 9, 2005
- Additional Notes: The first author was partially supported by CAPES 0092/01-0.
The second author was partially supported by CAPES 0092/01-0 and CNPq 476886/2001-5 - Communicated by: Carmen C. Chicone
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 3323-3331
- MSC (2000): Primary 34C14, 34C20, 34D15
- DOI: https://doi.org/10.1090/S0002-9939-05-07894-9
- MathSciNet review: 2161156