Jordan isomorphisms of triangular rings
HTML articles powered by AMS MathViewer
- by Tsai-Lien Wong
- Proc. Amer. Math. Soc. 133 (2005), 3381-3388
- DOI: https://doi.org/10.1090/S0002-9939-05-07989-X
- Published electronically: June 7, 2005
- PDF | Request permission
Abstract:
We investigate Jordan isomorphisms of triangular rings and give a sufficient condition under which they are necessarily isomorphisms or anti-isomorphisms. As corollaries we obtain generalizations of two recent results: the one concerning Jordan isomorphisms of triangular matrix algebras by Beidar, Brešar and Chebotar, and the one concerning Jordan isomorphisms of nest algebras by Lu.References
- G. Ancochea, Le théorème de von Staudt en géométrie projective quaternionienne, J. Reine Angew. Math. 184 (1942), 193–198 (French). MR 8893, DOI 10.1515/crll.1942.184.193
- Germán Ancochea, On semi-automorphisms of division algebras, Ann. of Math. (2) 48 (1947), 147–153. MR 18642, DOI 10.2307/1969221
- W. E. Baxter and W. S. Martindale III, Jordan homomorphisms of semiprime rings, J. Algebra 56 (1979), no. 2, 457–471. MR 528587, DOI 10.1016/0021-8693(79)90349-1
- K. I. Beidar, M. Brešar, and M. A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, Linear Algebra Appl. 312 (2000), no. 1-3, 197–201. MR 1759333, DOI 10.1016/S0024-3795(00)00087-2
- Matej Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), no. 1, 218–228. MR 1029414, DOI 10.1016/0021-8693(89)90285-8
- Matej Brešar, Jordan mappings of semiprime rings. II, Bull. Austral. Math. Soc. 44 (1991), no. 2, 233–238. MR 1126361, DOI 10.1017/S000497270002966X
- Wai-Shun Cheung, Commuting maps of triangular algebras, J. London Math. Soc. (2) 63 (2001), no. 1, 117–127. MR 1802761, DOI 10.1112/S0024610700001642
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341. MR 76751, DOI 10.1090/S0002-9947-1956-0076751-6
- Loo-Keng Hua, On the automorphisms of a sfield, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 386–389. MR 29886, DOI 10.1073/pnas.35.7.386
- N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502. MR 38335, DOI 10.1090/S0002-9947-1950-0038335-X
- Irving Kaplansky, Semi-automorphisms of rings, Duke Math. J. 14 (1947), 521–525. MR 22209
- Fangyan Lu, Jordan isomorphisms of nest algebras, Proc. Amer. Math. Soc. 131 (2003), no. 1, 147–154. MR 1929034, DOI 10.1090/S0002-9939-02-06587-5
- Lajos Molnár and Peter emrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), no. 2-3, 189–206. MR 1671619, DOI 10.1080/03081089808818586
- J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. (3) 15 (1965), 61–83. MR 171174, DOI 10.1112/plms/s3-15.1.61
- J. R. Ringrose, On some algebras of operators. II, Proc. London Math. Soc. (3) 16 (1966), 385–402. MR 196516, DOI 10.1112/plms/s3-16.1.385
- M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc. 84 (1957), 426–429. MR 83484, DOI 10.1090/S0002-9947-1957-0083484-X
Bibliographic Information
- Tsai-Lien Wong
- Affiliation: Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan, 804
- Email: tlwong@math.nsysu.edu.tw
- Received by editor(s): June 29, 2004
- Published electronically: June 7, 2005
- Additional Notes: This research was supported by NSC Grants NSC 91-2115-M-110-005
- Communicated by: David R. Larson
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 3381-3388
- MSC (2000): Primary 47L35; Secondary 16S50
- DOI: https://doi.org/10.1090/S0002-9939-05-07989-X
- MathSciNet review: 2161163