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EXTENSION OF A GENERALIZED PEXIDER EQUATION

JÁNOS ACZÉL

(Communicated by M. Gregory Forest)

Abstract. The equations k(s+t) = �(s)+n(t) and k(s+t) = m(s)n(t), called
Pexider equations, have been completely solved on R

2. If they are assumed to
hold only on an open region, they can be extended to R

2 (the second when k
is nowhere 0) and solved that way. In this paper their common generalization

k(s + t) = �(s) + m(s)n(t) is extended from an open region to R
2 and then

completely solved if k is not constant on any proper interval. This equation
has further interesting particular cases, such as k(s + t) = �(s) + m(s)k(t)
and k(s+ t) = k(s)+m(s)n(t), that arose in characterization of geometric and
power means and in a problem of equivalence of certain utility representations,
respectively, where the equations may hold only on an open region in R

2. Thus
these problems are solved too.

1. Introduction

It is known (see e.g. [2, pp. 76–80]) that, if the Pexider equation

(1.1) k(s + t) = �(s) + n(t)

holds on an open region (connected open set) R of R
2, then it can be extended to

the whole real plane R
2 in the following sense (true also on more general topological

spaces, see e.g. [8]): There exist unique functions K, L, N : R → R, equal to k, �, n,
respectively, on domains of the latter, and satisfying

K(x + y) = L(x) + N(y) for all (x, y) ∈ R
2.

A similar statement is true for another Pexider equation,

(1.2) k(s + t) = m(s)n(t)

if k is nowhere 0 on {s + t | (s, t) ∈ R}. No other regularity assumption was made
about the functions k, �, m, n.

While looking for certain equivalent utility representations, we found in [4] the
functional equation

(1.3) k(s + t) = �(s) + m(s)n(t)
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(actually with k = �), valid on

(1.4) {(s, t) | s ∈ ]a, b[, t ∈ ]0, b − s[}.
There are results in [3] and [6] about differentiability of measurable solutions of
equation (1.3) and of more general ones, on cartesian rectangles, leading to their
general measurable solution. However, (1.4) is not a cartesian rectangle. To remedy
that situation, we extend equation (1.3) from any open region in the real plane to
all of R

2 when k is not constant on any interval of positive length and determine
all solutions, in particular all measurable ones. Actually, in the final form of [4] the
measurable solutions of the special equation (k = �) have been determined by an
ad hoc method of C.T. Ng, without making use of extensions.

The general equation (1.3) is still of interest, since it generalizes both (1.1) and
(1.2), and also the equation k(s + t) = �(s) + m(s)k(t), an important tool in char-
acterizing geometric and power means (see e.g. [1, pp. 150–153], cf. [5, pp. 68–69]).
Our extension result makes it possible to calculate the general solution of equation
(1.3) and of its particular cases on any open region. Moreover, we will assume no
measurability (except in the Corollary) but determine the general solution without
any regularity assumption. We assume only that k is not constant on any interval
of positive length. We call such functions locally nonconstant (A. Lundberg [7] and
others call them “philandering”).

2. Extension from a hexagonal neighborhood to R
2

We first assume that equation (1.3) is valid on

H(c, d; r) := {(s, t) | s ∈ ]c − r, c + r[, t ∈ ]d − r, d + r[,

s + t ∈ ]c + d − r, c + d + r[}.
This is a hexagonal neighborhood of (c, d). We prove that equation (1.3) has a
unique extension from H(c, d; r) to R

2. This is the hard part. By properties of open
regions, what will remain to prove is that the extensions from two intersecting open
hexagons are the same.

Proposition. If k is locally nonconstant and

(2.1) k(s + t) = �(s) + m(s)n(t) for all (s, t) ∈ H(c, d; r),

then there exists a unique quadruple of functions K, L, M, N : R → R such that

L(s) = �(s), M(s) = m(s) (s ∈ ]c − r, c + r[),(2.2)

N(t) = n(t) (t ∈ ]d − r, d + r[), K(q) = k(q) (q ∈ ]c + d − r, c + d + r[),
(2.3)

and

(2.4) K(x + y) = L(x) + M(x)N(y) for all (x, y) ∈ R
2.

Proof. We prove the Proposition in three steps.
1. Moving center to origin:
Put s = c, t = d into (2.1) to get

(2.5) k(c + d) = �(c) + m(c)n(d).

With
H0 := {(u, v) | u, v, u + v ∈ ] − r, r[}
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and s = u + c, t = v + d in (2.1) we obtain

(2.6) k(u + v + c + d) = �(u + c) + m(u + c)n(v + d) ((u, v) ∈ H0).

We subtract (2.5) from (2.6) and get

(2.7)
k(u + v + c + d) − k(c + d)

= �(u + c) − �(c) + m(u + c)n(v + d) − m(c)n(d).

Substitute v = 0:

(2.8) k(u + c + d) − k(c + d) = �(u + c) − �(c) + [m(u + c) − m(c)]n(d).

Define

λ(u) = �(u + c) − �(c), µ(u) = m(u + c) − m(c),(2.9)

ν(v) = n(v + d) − n(d), κ(w) = k(w + c + d) − k(c + d)(2.10)

(u, v, w ∈ ] − r, r[ ; notice that λ(0) = µ(0) = ν(0) = κ(0) = 0). From (2.8), (2.9),
(2.10),

(2.11) κ(u) = λ(u) + µ(u)n(d)

and, from (2.7), (2.9), (2.10),

κ(u + v) = λ(u) + [µ(u) + m(c)][ν(v) + n(d)] − m(c)n(d);

that is, by (2.9), (2.10) and (2.11),

(2.12) κ(u + v) = κ(u) + m(u + c)ν(v).

Putting u = 0 gives κ(v) = m(c)ν(v). If m(c) were 0, then κ = 0 and k would be
constant, which was excluded. Thus

(2.13) ν(v) =
κ(v)
m(c)

.

Defining

(2.14) e(u) =
m(u + c)

m(c)
,

equation (2.12) becomes

(2.15) κ(u + v) = κ(u) + e(u)κ(v) ((u, v) ∈ H0).

The left-hand side being symmetric, so is the right: κ(u) + e(u)κ(v) = κ(v) +
e(v)κ(u), that is,

(2.16) κ(u)[e(v) − 1] = κ(v)[e(u) − 1].

There are two cases:
(i) The function e is identically 1. Then, by (2.15),

κ(u + v) = κ(u) + κ(v) ((u, v) ∈ H0).

(ii) The function e is not identically 1. Then, by (2.16),

(2.17) κ(v) = γ[e(v) − 1] (γ �= 0).

Putting this into (2.15), we get

(2.18) e(u + v) = e(u)e(v) ((u, v) ∈ H0).
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2. Case (i):
There, by (2.14), m(u + c)/m(c) = e(u) = 1, so m = constant = m(c) on

]c − r, c + r[. Thus, from (2.9), µ is identically 0 and, by (2.11),

(2.19) λ(u) = κ(u) (u ∈ ] − r, r[).

The equation κ(u + v) = κ(u)+ κ(v) has a unique extension from H0 to R
2 (see

e.g. [2, p. 17]; x + y ∈ I was omitted from the end of eq. (31) there); i.e., there
exists a unique A : R → R such that

(2.20) A(w) = κ(w) for w ∈ ] − r, r[

and

(2.21) A(x + y) = A(x) + A(y) for all (x, y) ∈ R
2.

We have, from (2.10) and (2.13),

n(v) = ν(v − d) + n(d) =
1

m(c)
κ(v − d) + n(d) for v ∈ ]d − r, d + r[.

Since κ has the unique extension A to R, the function n has the unique extension

(2.22) N(y) =
1

m(c)
A(y − d) + n(d) (y ∈ R).

Similarly, L, M, K, defined by

(2.23)

{
L(x) = A(x − c) + �(c), M(x) = m(c),

K(z) = A(z − c − d) + k(c + d) (x, z ∈ R),

are the unique extensions of �, m and k, respectively. We check this, for instance,
for � : by (2.9), (2.19), and (2.20),

�(s) = λ(s−c)+�(c) = κ(s−c)+�(c) = A(s−c)+�(c) = L(s) for s ∈ ]c−r, c+r[.

By (2.23), (2.22), (2.5) and (2.21), the extended functions L, M, K, N also satisfy
equation (2.4):

L(x) + M(x)N(y) = A(x − c) + �(c) + m(c)[
1

m(c)
A(y − d) + n(d)]

= A(x + y − c − d) + k(c + d) = K(x + y).

3. Case (ii):
If there existed a u0 ∈ ] − r, r[ with e(u0) = 0, then, by (2.18), e(u0 + v) =

e(u0)e(v) = 0; thus e and, by (2.17), κ would be constant on an interval, which
we excluded. If e has no zero in ] − r, r[, then, by (2.18), log e is additive, so it
and with it e has a unique extension from H0 to R

2; i.e., there exists a unique
E : R → R+ = ]0,∞[ such that

(2.24) E(w) = e(w) for w ∈ ] − r, r[

and

(2.25) E(x + y) = E(x)E(y) for all (x, y) ∈ R
2.

[The functions e, E are positive valued because e(x) = e(x/2)2 ≥ 0, E(x) =
E(x/2)2 ≥ 0 and if e or E were 0 at a point, we would get, as above, e(x) ≡ 0
or E(x) ≡ 0, respectively; these have been excluded; also e(x) ≡ 1, E(x) ≡ 1 were
excluded.]
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From (2.9), (2.11), (2.17) and from (2.14),

�(u) = λ(u − c) + �(c)

= κ(u − c) − µ(u − c)n(d) + �(c)

= γ[e(u − c) − 1] − [m(u) − m(c)]n(d) + �(c)

= [γ − m(c)n(d)][e(u − c) − 1] + �(c).

Since γ is a constant determined by e and since e has the unique extension E to
R+, the function � has the unique extension

(2.26) L(x) = [γ − m(c)n(d)]E(x− c) − γ + m(c)n(d) + �(c) (x ∈ R).

Similarly, N, M, K, defined by

(2.27) N(y) =
γ[E(y − d) − 1]

m(c)
+ n(d) (y ∈ R)

and

(2.28)

{
M(x) = m(c)E(x− c) (x ∈ R),

K(z) = γ[E(z − c − d) − 1] + k(c + d) (z ∈ R),

are the unique extensions of n and m, k, respectively. For example, check for n:
By (2.10), (2.13), and (2.17),

n(t) = ν(t − d) + n(d)

=
κ(t − d)

m(c)
+ n(d)

=
γ[e(t − d) − 1]

m(c)
+ n(d)

= N(t) for t ∈ ]d − r, d + r[.

By (2.26), (2.27), (2.28), (2.5) and (2.25) the extended functions L, N, M, K
satisfy equation (2.4):

L(x) + M(x)N(y) = γE(x − c)E(y − d) − γ + m(c)n(d) + �(c)

= γ[E(x + y − c − d) − 1] + k(c + d) = K(x + y).

�

3. Extension from open region to R
2

Theorem 1. Let R be an open region in R
2 and let

(3.1)




Rs := {s | ∃t : (s, t) ∈ R},
Rt := {t | ∃s : (s, t) ∈ R},
Rs+t := {s + t | (s, t) ∈ R}.

If k is locally nonconstant and

(3.2) k(s + t) = �(s) + m(s)n(t) for all (s, t) ∈ R,

then there exists a unique quadruple of functions K, L, M, N : R → R such that

L(s) = �(s), M(s) = m(s) (s ∈ Rs), N(t) = n(t) (t ∈ Rt), K(q) = k(q) (q ∈ Rs+t)

and

(3.3) K(x + y) = L(x) + M(x)N(y) for all (x, y) ∈ R
2.
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Proof. Take two open sets, S1 and S2, with nonempty intersection. Suppose that
equation (3.2) has a unique extension from S1 and a unique extension from S2.
We show that in this case there exists a unique extension from their union and the
three extended quadruples L, M, N, K, starting from the two open sets and their
union, are the same.

Indeed, for the intersection D of the two open sets, Dx := {x | ∃y : (x, y) ∈ D}
contains an interval I of positive length. Take an arbitrary (c, d) ∈ D such that
c ∈ I. By (2.10) and (2.20), the two additive functions A1 and A2, obtained from the
first and second set, respectively, are equal on a neighborhood U of c. So A1 − A2,
that is also additive on R

2, is zero on U. But an additive function that is zero on
an interval of positive length is identically zero everywhere, so A1(x) = A2(x) for
all x ∈ R. The L, N, K built from them in case (i) and the constant M are also the
same for the two sets. The argument is similar in case (ii) (there M1, M2, E1, E2

and E1/E2 are to be considered).
Finally, if R is an open region (connected open set), then it is path-connected,

so a standard compactness argument (we move on strings of intersecting hexagonal
neighborhoods) gives the result. �

Note 1. The general solutions (with locally nonconstant K) of equation (3.3)
are given by (2.22), (2.23) and by (2.26), (2.27), (2.28) with arbitrary constants
γ �= 0, c, d, arbitrary constants in place of �(c), m(c), n(d) with k(c + d) = �(c) +
m(c)n(d), and with arbitrary locally nonconstant exponential E and additive A.
Exponential functions are the solutions of

(3.4) E(x + y) = E(x)E(y) ((x, y) ∈ R
2).

Thus we have the following.

Theorem 2. Let R ⊆ R
2 be an open region and Rs, Rt, Rs+t defined as in (3.1).

Then the general solutions, with locally nonconstant k, of equation (3.2) are given
by

m(s) = ω, �(s) = A(s) + B (s ∈ Rs),(3.5)

n(t) =
1
ω

A(t) + P (t ∈ Rt), k(q) = A(q) + B + Pω (q ∈ Rs+t)(3.6)

and by

m(s) = ωE(s), �(s) = αE(s) + B (s ∈ Rs),(3.7)

n(t) = δE(t) − α

ω
(t ∈ Rt), k(q) = ωδE(q) + B (q ∈ Rs+t),(3.8)

where A : R → R and E : R → R+ are arbitrary locally nonconstant additive or
exponential functions (solutions of (3.4)), respectively, and ω �= 0, δ �= 0, α, B, P
are arbitrary constants.

Proof. From equations (2.2), (2.3), (2.23), (2.22) (with ω := m(C)) we get, since A
is additive,

m(s) = ω, �(s) = A(s) + B (s ∈ Rs),

n(t) =
1
ω

A(t) + P (t ∈ Rt),

k(q) = A(q) + Q (q ∈ Rs+t).

Substitution into (3.2) gives Q = B + Pω; thus (3.5) and (3.6) hold.
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On the other hand, since E satisfies (3.4), we get from (2.2), (2.3), (2.26), (2.27),
(2.28) that

m(s) = ωE(s), �(s) = αE(s) + B (s ∈ Rs),

n(t) = δE(t) + P (t ∈ Rt), k(q) = εE(q) + Q (q ∈ Rs+t)

(ε �= 0 because k is locally nonconstant). Putting these into (3.2), we get ε = ωδ �=
0, P = −α/ω, Q = B, thus (3.7) and (3.8). �

Since the nonconstant measurable solutions of (2.21) and (3.4) are given by
A(x) = Cx and E(x) = eCx (C �= 0), respectively, we have also the following:

Corollary. Let R ⊆ R
2 be an open region and Rs, Rt, Rs+t defined as in (3.1).

Then the general solutions of equation (3.2), with locally nonconstant k, measurable
on an interval, are given by

m(s) = ω, �(s) = Cs + B (s ∈ Rs),

n(t) =
C

ω
t + P (t ∈ Rt), k(q) = Cq + B + Pω (q ∈ Rs+t)

and by

m(s) = ωeCs, �(s) = αeCs + B (s ∈ Rs),

n(t) = δeCt − α

ω
(t ∈ Rt), k(q) = ωδeCq + B (q ∈ Rs+t),

where α, B, P, C, ω, δ are arbitrary constants with Cωδ �= 0.

Note 2. If k is constant, then (1.3) is a particular case of
∑

fj(s)gj(t) = 0,
whose general solutions are well known (see e.g. [1, pp. 160–165]).
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