Definite regular quadratic forms over $\mathbb F_q[T]$
HTML articles powered by AMS MathViewer
- by Wai Kiu Chan and Joshua Daniels
- Proc. Amer. Math. Soc. 133 (2005), 3121-3131
- DOI: https://doi.org/10.1090/S0002-9939-05-08197-9
- Published electronically: June 20, 2005
- PDF | Request permission
Abstract:
Let $q$ be a power of an odd prime, and $\mathbb {F}_q[T]$ be the ring of polynomials over a finite field $\mathbb {F}_q$ of $q$ elements. A quadratic form $f$ over $\mathbb {F}_q[T]$ is said to be regular if $f$ globally represents all polynomials that are represented by the genus of $f$. In this paper, we study definite regular quadratic forms over $\mathbb {F}_q[T]$. It is shown that for a fixed $q$, there are only finitely many equivalence classes of regular definite primitive quadratic forms over $\mathbb {F}_q[T]$, regardless of the number of variables. Characterizations of those which are universal are also given.References
- Wai Kiu Chan and A. G. Earnest, Discriminant bounds for spinor regular ternary quadratic lattices, J. London Math. Soc. (2) 69 (2004), no. 3, 545–561. MR 2048511, DOI 10.1112/S002461070400523X
- Wai Kiu Chan, A. G. Earnest, and Byeong-Kweon Oh, Regularity properties of positive definite integral quadratic forms, Algebraic and arithmetic theory of quadratic forms, Contemp. Math., vol. 344, Amer. Math. Soc., Providence, RI, 2004, pp. 59–71. MR 2058667, DOI 10.1090/conm/344/06208
- Wai Kiu Chan and Byeong-Kweon Oh, Finiteness theorems for positive definite $n$-regular quadratic forms, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2385–2396. MR 1973994, DOI 10.1090/S0002-9947-03-03262-8
- Wai Kiu Chan and Byeong-Kweon Oh, Positive ternary quadratic forms with finitely many exceptions, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1567–1573. MR 2051115, DOI 10.1090/S0002-9939-04-07433-7
- L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math. (2) 28 (1926/27), no. 1-4, 333–341. MR 1502786, DOI 10.2307/1968378
- Dragomir Ž. Djoković, Hermitian matrices over polynomial rings, J. Algebra 43 (1976), no. 2, 359–374. MR 437565, DOI 10.1016/0021-8693(76)90119-8
- A. G. Earnest, An application of character sum inequalities to quadratic forms, Number theory (Halifax, NS, 1994) CMS Conf. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 1995, pp. 155–158. MR 1353928, DOI 10.1006/jabr.1995.1261
- Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR 868860, DOI 10.1007/978-3-662-07216-5
- Larry J. Gerstein, Definite quadratic forms over ${\Bbb F}_q[x]$, J. Algebra 268 (2003), no. 1, 252–263. MR 2005286, DOI 10.1016/S0021-8693(03)00114-5
- Larry J. Gerstein, On representation by quadratic $\Bbb F_q[x]$-lattices, Algebraic and arithmetic theory of quadratic forms, Contemp. Math., vol. 344, Amer. Math. Soc., Providence, RI, 2004, pp. 129–134. MR 2058672, DOI 10.1090/conm/344/06213
- William C. Jagy, Irving Kaplansky, and Alexander Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), no. 2, 332–341. MR 1600553, DOI 10.1112/S002557930001264X
- Yoshiyuki Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106, Cambridge University Press, Cambridge, 1993. MR 1245266, DOI 10.1017/CBO9780511666155
- Ulrike Korte, Class numbers of definite binary quadratic lattices over algebraic function fields, J. Number Theory 19 (1984), no. 1, 33–39. MR 751162, DOI 10.1016/0022-314X(84)90090-8
- M. H. Kim, Y. Wang and F. Xu, Universal quadratic forms over $\mathbb F_q[x]$, preprint.
- O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0152507, DOI 10.1007/978-3-642-62031-7
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657, DOI 10.1007/978-1-4757-6046-0
- G. L. Watson, Some problems in the theory of numbers, Ph.D. thesis, University College, London (1953).
- G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika 1 (1954), 104–110. MR 67162, DOI 10.1112/S0025579300000589
Bibliographic Information
- Wai Kiu Chan
- Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
- MR Author ID: 336822
- Email: wkchan@wesleyan.edu
- Joshua Daniels
- Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
- Address at time of publication: 2920 Deakin Street #1, Berkeley, California 94705
- Email: jdaniels@wesleyan.edu
- Received by editor(s): May 21, 2004
- Published electronically: June 20, 2005
- Additional Notes: The research of the first author was partially supported by the National Security Agency and the National Science Foundation.
- Communicated by: David E. Rohrlich
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 3121-3131
- MSC (2000): Primary 11E12, 11E20
- DOI: https://doi.org/10.1090/S0002-9939-05-08197-9
- MathSciNet review: 2160173