MORITA EQUIVALENCE FOR QUANTUM HEISENBERG MANIFOLDS

BEATRIZ ABADIE

(Communicated by David R. Larson)

ABSTRACT. We discuss Morita equivalence within the family \{D_{c\mu\nu}^c : c \in \mathbb{Z}, c > 0, \mu, \nu \in \mathbb{R}\} of quantum Heisenberg manifolds. Morita equivalence classes are described in terms of the parameters \mu, \nu and the rank of the free abelian group \(G_{\mu\nu} = 2\mu\mathbb{Z} + 2\nu\mathbb{Z} + \mathbb{Z}\) associated to the \(C^\ast\)-algebra \(D_{c\mu\nu}^c\).

INTRODUCTION

Quantum Heisenberg manifolds \(\{D_{c\mu\nu}^c : c \in \mathbb{Z}, c > 0, \mu, \nu \in \mathbb{R}\}\) were constructed by Rieffel in [Rf4] as a quantization deformation of certain homogeneous spaces \(H/N_c, H\) being the Heisenberg group.

It was shown in [Ab1] 3.4 that \(K_0(D_{c\mu\nu}^c) \cong \mathbb{Z}^3 \oplus \mathbb{Z}_c\), which implies that \(D_{c\mu\nu}^c\) and \(D_{c'\mu'\nu'}^{c'}\) are not isomorphic unless \(c = c'\). Besides, \(D_{c\mu\nu}^c\) and \(D_{c'\mu'\nu'}^{c'}\) are isomorphic when \((2\mu, 2\nu)\) and \((2\mu', 2\nu')\) belong to the same orbit under the usual action of \(GL_2(\mathbb{Z})\) on \(\mathbb{T}^2\) ([AE Theorem 2.2]; see also [Ab2] 3.3). The range of traces on \(D_{c\mu\nu}^c\) was discussed in [Ab2], where it was shown that the range of the homomorphism induced on \(K_0(D_{c\mu\nu}^c)\) by any tracial state on \(D_{c\mu\nu}^c\) has range \(G_{\mu\nu} = \mathbb{Z} + 2\mu\mathbb{Z} + 2\nu\mathbb{Z}\).

As a consequence ([Ab2] 3.17]), the isomorphism condition stated above turns out to be necessary when the rank of \(G_{\mu\nu}\) is either 1 or 3. Rieffel showed in [Rf4] that \(D_{c\mu\nu}^c\), is simple if and only if \(\{1, \mu, \nu\}\) is linearly independent over the field of rational numbers (i.e. rank \(G_{\mu\nu} = 3\)). It might be interesting to know whether in this case the classification can be made by means of the results of Elliott and Gong ([EG]).

The quantum Heisenberg manifold \(D_{c\mu\nu}^c\) was described in [AEE] as a crossed product by a Hilbert \(C^\ast\)-bimodule. In order to discuss Morita equivalence within this family, we adapt to this setting some of the techniques employed in the analogous discussion for non-commutative tori ([Rf3]) and Heisenberg \(C^\ast\)-algebras ([Pa2]). Thus we generalize in Section 1 Green’s result (discussed by Rieffel in [Rf2 Situation 10]) on the Morita equivalence of the crossed products \(C_0(M/K) \rtimes H\) and \(C_0(M/H) \rtimes K\), for free and proper commuting actions on a locally compact space \(M\). This result provides the main tool used to discuss Morita equivalence for quantum Heisenberg manifolds (Section 2).

Received by the editors November 21, 2003 and, in revised form, July 6, 2004.

2000 Mathematics Subject Classification. Primary 46L65; Secondary 46L08.

This work was partially supported by Dinacyt (Proyecto Clemente Estable 8013), Uruguay.
1. Morita equivalence of crossed products by certain Hilbert C^*-bimodules over commutative C^*-algebras

For a Hilbert C^*-bimodule X over a C^*-algebra A, the crossed product $A \rtimes X$ was introduced in [AEF] (see also [Pi]) as the universal C^*-algebra for which there exist a *-homomorphism $i_A : A \longrightarrow A \rtimes X$ and a continuous linear map $i_X : X \longrightarrow A \rtimes X$ such that

\[i_X(ax) = i_A(a)i_X(x), \quad i_A((x,y)L) = i_X(x)i_X(y)^*, \quad i_X(ax) = i_X(x)i_A(a), \quad i_A((x,y)R) = i_X(x)^*i_X(y). \]

The crossed product $A \rtimes X$ carries a dual action δ of S^1, defined by $\delta_z(i_A(a)) = i_A(a)$, $\delta_z(i_X(x)) = z i_X(x)$, for $a \in A$, $x \in X$ and $z \in S^1$. Moreover, if a C^*-algebra B carries an action δ of S^1 such that B is generated as a C^*-algebra by the fixed point subalgebra $B_0 = \{ b \in B : \delta_z(b) = b \ \forall z \in S^1 \}$ and the first spectral subspace $B_1 = \{ b \in B : \delta_z(b) = zb \ \forall z \in S^1 \}$, then B is isomorphic to $B_0 \rtimes B_1$ (where B_1 has the obvious Hilbert C^*-bimodule structure over B_0), via an isomorphism that takes the action δ into the dual action.

If X is an A-Hilbert C^*-bimodule and $\alpha \in \text{Aut}(A)$, we denote by X_α the Hilbert C^*-bimodule over A obtained by leaving unchanged the left structure, and by setting

\[x \cdot x_\alpha a := x\alpha(a), \quad (x,y)^{X_\alpha} := \alpha^{-1}(\langle x,y \rangle_R), \]

where the undecorated notation refers to the original right structure of X.

For $\alpha \in \text{Aut}(A)$ and the usual A-Hilbert C^*-bimodule structure on A, the crossed product $A \rtimes A_\alpha$ is easily checked to be the usual crossed product $A \rtimes A Z$.

Definition 1.1. Given a proper action α of \mathbb{Z} on a locally compact Hausdorff space M and a unitary $u \in C_0(M)$, let $X^{\alpha,u}$ denote the set of functions $f \in C_0(M)$ satisfying $f = u\alpha(f)$, and such that the map $x \mapsto |f(x)|$, which is constant on α-orbits, belongs to $C_0(M/\alpha)$. Then $X^{\alpha,u}$ is a Hilbert C^*-bimodule over $C_0(M/\alpha)$ for pointwise multiplication on the left and the right, and inner products given by $\langle f, g \rangle_L = f\overline{g}, \langle f, g \rangle_R = \overline{f}g$.

Proposition 1.2. Let α and β be free and proper commuting actions of \mathbb{Z} on a locally compact Hausdorff space M, and let u be a unitary in $C_0(M)$. Then the C^*-algebras $C_0(M/\alpha) \rtimes X^{\alpha,u}$ and $C_0(M/\beta) \rtimes X^{\alpha,u}$ are Morita equivalent.

Proof. Let $U : Z \times Z \longrightarrow U(C_0(M))$ be given by

\[U(n, k) = \begin{cases} 1, & \text{if either } n = 0 \text{ or } k = 0, \\ \prod_{l \in S_k} \alpha^j(b^i(u^*), & \text{for } n, k > 0, \\ \prod_{l \in S_k} \alpha^j(b^i(u^*), & \text{for either } n \text{ or } k < 0, \text{ and } nk \neq 0, \end{cases} \]

where $S_l = \{0, 1, \ldots, l-1\}$ if $l > 0$ and $S_l = \{-1, -2, \ldots, l\}$ if $l < 0$. Straightforward computations show that $U(m + n, k) = U(m, k)\beta(m)(U(n, k))$, and $U(n, k + l) = U(n, k)\alpha(l)(U(n, l))$.

Consider the proper actions γ^α and γ^β of \mathbb{Z} on $C_0(M) \rtimes Z$ and $C_0(M) \rtimes Z$, respectively, given by

\[\gamma^\alpha_n(\phi)(n) = U(n, k)\alpha^k(\phi(n)) \] and \[\gamma^\beta_n(\psi)(k) = U^*(n, k)\beta^m(\psi(k)), \]

for $\phi \in C_0(Z, C_0(M)) \subset C_0(M) \rtimes Z$ and $\psi \in C_0(Z, C_0(M)) \subset C_0(M) \rtimes Z$.

These two actions correspond, respectively, to $\gamma^\alpha U$ and $\gamma^\beta U^*$ in [Ab1] Propositions 1.2 and 2.1. By virtue of [Ab1] Theorem 2.12, the generalized fixed-point algebras, in the sense of [RGL] Definition 1.4, D^α and D^β of $C_0(M) \rtimes Z$ and
$C_0(M) \rtimes_{\alpha} \mathbb{Z}$ under the actions γ^α and γ^β, respectively, are Morita equivalent. The result will then be proved once we show that $D^\alpha \cong C_0(M/\alpha) \times X^\alpha_{\beta}$ and $D^\beta \cong C_0(M/\beta) \times X^\beta_{\alpha}$.

Recall from [Ab1, Proposition 2.1] that D^α is defined to be the closed span in $\mathcal{M}(C_0(M) \rtimes_{\beta} \mathbb{Z})$ of the set $\{P_\alpha(\phi \ast \psi) : \phi, \psi \in C_c(\mathbb{Z} \times M)\}$, where

$$P_\alpha(\phi)(x, n) = \sum_{k \in \mathbb{Z}} [\gamma^\alpha_k(\phi)](x, n),$$

for $\phi \in C_c(\mathbb{Z} \times M) \subset C_0(M) \rtimes_{\beta} \mathbb{Z}$, $x \in M$, and $n \in \mathbb{Z}$.

The C^*-algebra D^α can also be described ([Ab1, Proposition 2.8]) as the closure in $\mathcal{M}(C_0(M) \rtimes_{\beta} \mathbb{Z})$ of the $*$-subalgebra $C^\alpha = \{F \in C_c(\mathbb{Z}, C_0(M)) : \gamma^\alpha(F) = F$ and $\pi_\alpha(\text{supp } F(n))$ is precompact for all $n \in \mathbb{Z}\}$, where π_α denotes the canonical projection $\pi_\alpha : M \rightarrow M/\alpha$.

Now, since C^α is contained in $C_b(M) \rtimes_{\beta} \mathbb{Z}$, which is closed in $\mathcal{M}(C_0(M) \rtimes_{\beta} \mathbb{Z})$, so is D^α. Moreover, the C^*-algebra D^α is invariant under the dual action $\hat{\beta}$ of T on $C_b(M) \rtimes_{\beta} \mathbb{Z}$:

$$[\gamma^\alpha(\hat{\beta}_z F)](n, x) = U(n, 1)(x)(\hat{\beta}_z(F))(n, \alpha^{-1}x)$$

$$= U(n, 1)(x)z^n F(n, \alpha^{-1}x)$$

$$= z^n F(n, x)$$

$$= (\hat{\beta}_z F)(n, x),$$

for $F \in C^\alpha$, $x \in M$, $n \in \mathbb{Z}$, and $z \in \mathbb{T}$. Besides, $\text{supp } (\hat{\beta}_z(F)(n)) = \text{supp } F(n)$ for all $n \in \mathbb{Z}$, so $\hat{\beta}_z(F) \in C^\alpha$ for all $z \in \mathbb{T}$.

We next show that the action $\hat{\beta}$ on D^α is semi-saturated. That is, that, as a C^*-algebra, D^α is generated by the fixed-point subalgebra D_0 and the first spectral subspace $D_1 = \{d \in D^\alpha : \hat{\beta}_z(d) = zd \quad \forall z \in \mathbb{T}\}$ for the restriction of the dual action $\hat{\beta}$.

Since the maps $P_i : D^\alpha \rightarrow D_i$ given by $P_i(a) = \int_{\mathbb{T}} z^{-i} \hat{\beta}_z(a) \, dz$ are surjective contractions, D_i is the closure of $P_i(C^\alpha)$. Now, for $i = 0, 1$, $C_i = C^\alpha \cap F_i$, and $D_i = D^\alpha \cap F_i$, where F_0 and F_1 are, respectively, the fixed-point subalgebra and the first spectral subspace of $C_b(M) \rtimes_{\beta} \mathbb{Z}$, which are known to be the δ_i-maps; that is, $F_i = \{F \in C_c(\mathbb{Z}, C_b(M)) : \text{supp } F = \{i\}\}$.

Note that

$$C^\alpha \cap F_0 = \{f \delta_0 : f \in C_0(M) : \pi_\alpha(\text{supp } f) \text{ is precompact and } f = \alpha(f)\}$$

can be identified with $C_c(M/\alpha)$ via $f \delta_0 \mapsto \hat{f}$, where $\hat{f} = f \circ \alpha = f$, and that this map extends to a $*$-isomorphism between D_0 and $C_0(M/\alpha)$.

Now, D_1 is a Hilbert C^*-bimodule over D_0 for

$$\begin{align*}
(1a) \quad (f \delta_0) \ast (g \delta_2) &= (f g) \delta_1, \\
(1b) \quad (f \delta_1, g \delta_1)_L &= (f \delta_1) \ast (g \delta_1)^* = (f g) \delta_0, \\
(1c) \quad (f \delta_1, g \delta_1)_R &= (f \delta_1)^* \ast (g \delta_1) = (\beta^{-1}(f g)) \delta_0.
\end{align*}$$

Note that D_1 is full on the left (and on the right, by a similar argument) as a Hilbert C^*-bimodule over $C_0(M/\alpha)$. For $(D_1, D_1)_L$, the closed linear span in $C_0(M/\alpha) \equiv D_0$ of the set $\{f \delta_1, g \delta_1 : f \delta_1, g \delta_1 \in D_1\}$ is a closed ideal of $C_0(M/\alpha)$. Therefore, unless $(D_1, D_1)_L = C_0(M/\alpha)$, there exists $x_0 \in M$ such that $f(x_0) = 0$ for all $f \delta_1 \in D_1$.

Now, given \(x_0 \in M \), we can choose (\cite[Situation 10]{Rf2}) a neighborhood \(U \) of \(x_0 \) such that \(U \cap \alpha^k(U) = \emptyset \) for \(k \neq 0 \). Let \(g \in C_c(M)^+ \) be such that \(\text{supp } g \subset U \) and \(g(x_0) = 1 \).

Then
\[
[P_{\alpha}(g^{1/2} \delta_0) * (g^{1/2} \delta_1)](x,n) = (P_{\alpha}(g \delta_1))(x,n) = \left(\sum_k U(1,k)(x)g(\alpha^{-k}(x)) \right) \delta_1(n),
\]
so \(P_{\alpha}(g^{1/2} \delta_0) * (g^{1/2} \delta_1) \in D_1 \) and equals 1 at \((x_0,1) \).

In order to prove that \(C^\alpha \subset C^*(D_0, D_1) \), it suffices to show that \(f \delta_k \in C^*(D_0, D_1) \) for \(f \delta_k \in C^\alpha, k \in \mathbb{Z}. \) Since \(C^\alpha \) is closed under involution, we may assume that \(k \geq 0. \) We show this fact, which clearly holds for \(k = 0 \) and \(k = 1 \), by induction on \(k \).

If \(f \delta_k \in C^\alpha \) and \(\epsilon > 0 \), since \(\pi_{\alpha}(\text{supp } f) \) is precompact in \(M/\alpha \), and \(D_1 \) is full over \(C_0(M/\alpha) \), we can find \(\phi_i, \psi_i \in D_1, i = 1, \ldots, p \), such that
\[
\| \sum_i (\phi_i * \psi_i^*) * f \delta_1 - f \delta_1 \|_{D_1} = \| \sum_i (\phi_i, \psi_i)_{L^1} - f \|_{C_0(M)} < \epsilon.
\]

Now, since \(\phi_i \) and \(\psi_i^* \) belong to \(C^\alpha(D_0, D_1) \) for \(i = 1, \ldots, p \), so does \(f \). This shows that \(D^\alpha = C^*(D_0, D_1) \) and, consequently, by [AEE] Theorem 3.1, that \(D^\alpha \cong D_0 \times D_1 \).

It only remains to note now that \(D_0 \times D_1 \cong C_0(M/\alpha) \rtimes X_{\beta}^{\alpha,u} \). As noted above, \(D_0 \) is isomorphic to \(C_0(M/\alpha) \). On the other hand, the map \(f \delta_1 \mapsto f \) takes \(C^\alpha \cap F_1 \) to \(X_{\beta}^{\alpha,u} \). By keeping track of the formulae in (1a)–(1c), one easily checks that the map is an isometry, so it extends to an isometry from \(D_1 \) to \(X_{\beta}^{\alpha,u} \), which is onto because its image contains the dense set
\[
X_0^{\alpha,u} = \{ f \in X_{\beta}^{\alpha,u} : \text{the map } x \mapsto |f(x)| \text{ is compactly supported on } M/\alpha \}.
\]
(Note that \(X_0^{\alpha,u} \) is dense in \(X_{\beta}^{\alpha,u} \), because, if \(\{ e_\lambda \} \) is an approximate identity for \(C_c(M/\alpha) \), then \(e_\lambda f \) converges to \(f \) for all \(f \in X_{\beta}^{\alpha,u} \).)

This shows that \(D^\alpha \) is isomorphic to \(C_0(M/\alpha) \rtimes X_{\beta}^{\alpha,u} \). Analogously, \(D^\beta \) is isomorphic to \(C_0(M/\beta) \rtimes X_{\beta}^{\alpha,u} \).

\[\square \]

2. Morita equivalence for quantum Heisenberg manifolds

In [AEE] (see also [AE 2]) the quantum Heisenberg manifold \(D_{\mu \nu}^{c} \) was shown to be the crossed product of \(C(\mathbb{T}^2) \), the \(C^* \)-algebra of continuous functions on the torus, by the Hilbert \(C^* \)-bimodule \(M_{\mu \nu}^{c} \), where \(\alpha_{\mu \nu}(x,y) = (x + 2\mu, y + 2\nu) \), and
\[
M^{c} = \{ f \in C_b(\mathbb{R} \times \mathbb{T}) : f(x+1, y) = e^{-2\pi i c y} f(x, y) \}
\]
is the Hilbert \(C^* \)-bimodule obtained by letting \(C(\mathbb{T}^2) \) act by pointwise product, and by defining the inner products \((f,g)_L = f\overline{g}, (f,g)_R = \overline{f}g \).

Remark 2.1. The \(C^* \)-algebras \(D_{\mu \nu}^{c} \) and \(D_{\mu' \nu'}^{c} \) are isomorphic when the projections of \((2\mu, 2\nu) \) and \((2\mu', 2\nu') \) on the torus are in the same orbit under the usual action of \(GL_2(\mathbb{Z}) \) ([AE Theorem 2.2], see also [Ab2 Remark 3.3]).

Proposition 2.2. Let \(\mu \neq 0. \) Then \(D_{\mu \nu}^{c} \) and \(D_{\frac{1}{\mu}, \frac{1}{\nu}}^{c} \) are Morita equivalent.
Proof. We follow the lines of [KR, 1.1] and apply Proposition 1.2 to the following setting: \(\alpha \) and \(\beta \) consist of translation on \(\mathbb{R} \times T \) by \((\frac{1}{2\mu}, 0) \) and \((1, 2\nu) \), respectively, and \(u \in C_{b}(\mathbb{R} \times T) \) is given by \(u(x, y) = e(-cy) \), where \(T \) is viewed as \(\mathbb{R}/\mathbb{Z} \) and, for a real number \(h \), \(e(h) = e^{2\pi ih} \).

Then, by Proposition 1.2, \(C((\mathbb{R} \times T)/\alpha) \rtimes X_{\alpha}^{\alpha,u} \) and \(C((\mathbb{R} \times T)/\beta) \rtimes X_{\beta}^{\beta,u} \) are Morita equivalent, where

\[
X_{\alpha,u} = \{ F \in C_{b}(\mathbb{R} \times T) : F(x - \frac{1}{2\mu}, y) = e(cy)F(x,y) \} \quad \text{and} \quad X_{\beta,\alpha,u} = \{ F \in C_{b}(\mathbb{R} \times T) : F(x - 1, y - 2\nu) = e(-cy)F(x,y) \}
\]

and, for \((\mu', \nu') = \left(\frac{\mu}{4\mu}, \frac{\nu}{2\nu} \right) \), set

\[
J_{\alpha} : M_{\alpha,\nu} \to X_{\alpha}^{\alpha,u} \quad \text{and} \quad J_{\beta} : M_{\beta,\mu} \to X_{\beta,\alpha,u}.
\]

Note that

\[
(J_{\alpha}f)(x) = f(2\mu x, y), \quad (J_{\beta}f)(x) = e(c(x + 1)\nu)f(x, 2\nu x - y).
\]

so the definitions make sense.

For \(i = \alpha, \beta \), it is easily checked that \(J_{i} \) is a bijection and that, for \(\phi \in C(T^{2}) \), \(f, g \in M_{C}^{c} \):

\[
J_{i}(\phi \cdot f) = H_{i}(\phi) \cdot J_{i}(f), \quad J_{i}(f \cdot \phi) = J_{i}(f) \cdot H_{i}(\phi),
\]

\[
\langle J_{i}f, J_{i}g \rangle_{L} = H_{i}((f, g)_{L}), \quad \langle J_{i}f, J_{i}g \rangle_{R} = H_{i}((f, g)_{R}).
\]

This shows that \(D_{\mu,\nu}^{c} = C(T^{2}) \rtimes M_{\mu,\nu}^{c} \) and \(D_{\mu',\nu'}^{c} = C(T^{2}) \rtimes M_{\mu',\nu'}^{c} \) are isomorphic, respectively, to \(C((\mathbb{R} \times T)/\alpha) \rtimes X_{\alpha}^{\alpha,u} \) and \(C((\mathbb{R} \times T)/\beta) \rtimes X_{\beta,\alpha,u} \), and they are, consequently, Morita equivalent to each other. \hfill \Box

Corollary 2.3. Let \(\mu \notin \mathbb{Q} \), and let \(A = \left(\begin{array}{cc} \frac{a}{c} & \frac{b}{d} \\ c & d \end{array} \right) \in GL_{2}(\mathbb{Z}) \). If

\[
2\mu' = \frac{2a\mu + b}{2c\mu + d} \quad \text{and} \quad 2\nu' = \frac{2\nu}{2c\mu + d},
\]

then the quantum Heisenberg manifolds \(D_{\mu,\nu}^{c} \) and \(D_{\mu',\nu'}^{c} \) are Morita equivalent.

Proof. It suffices to check the statement for \(A_{1} = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \) and \(A_{2} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \), since \(A_{1} \) and \(A_{2} \) generate \(GL_{2}(\mathbb{Z}) \) ([Ku, Appendix B]), and \((\mu, \nu) \mapsto (\mu', \nu') \) defines an action of \(GL_{2}(\mathbb{Z}) \) on \((\mathbb{R} \setminus \mathbb{Q}) \times \mathbb{R} \). For \(A = A_{1} \) we get isomorphic \(C^{*} \)-algebras by Remark 2.1. For \(A = A_{2} \), we get \((\mu', \nu') = \left(\frac{1}{4\mu}, \frac{1}{2\nu} \right) \), and the result follows from Proposition 2.2. \hfill \Box
Proposition 2.4. Let \(\{1, \mu, \nu\} \) be linearly independent over \(\mathbb{Q} \), and let \(A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \text{GL}_3(\mathbb{Z}) \). If
\[
2\mu' = \frac{2a\mu + 2b\nu + c}{2g\mu + 2h\nu + i} \quad \text{and} \quad 2\nu' = \frac{2d\mu + 2e\nu + f}{2g\mu + 2h\nu + i},
\]
then the quantum Heisenberg manifolds \(D^{c}_{\mu,\nu} \) and \(D^{c}_{\mu',\nu'} \) are Morita equivalent.

Proof. As in the proof of Theorem 1.7 in [Pa2], \(A = A_1A_2A_3 \), where
\[
A_1 = \begin{pmatrix} A & B & C \\ D & E & F \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} G & 0 & H \\ 0 & 1 & 0 \\ I & 0 & J \end{pmatrix}, \quad A_3 = \begin{pmatrix} K & L & 0 \\ M & N & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]
and \(A_i \in \text{GL}_3(\mathbb{Z}) \), for \(i = 1, 2, 3 \).

Since the map \((\mu, \nu) \mapsto (\mu', \nu')\) defines an action of \(\text{GL}_3(\mathbb{Z}) \) on the set \(\{(\mu, \nu) \in \mathbb{R}^2 : \{1, \mu, \nu\} \text{ is linearly independent over } \mathbb{Q}\} \), it suffices to check the statement for \(A_i, i = 1, 2, 3 \).

For \(A = A_1 \) and \(A = A_3 \) the \(C^* \)-algebras \(D^{c}_{\mu,\nu} \) and \(D^{c}_{\mu',\nu'} \) are isomorphic by Remark 2.1. Thus it suffices to show the result for \(A = A_2 \). The map \((G \quad H \quad J) \mapsto A_2\) is a group homomorphism from \(\text{GL}_2(\mathbb{Z}) \) into \(\text{GL}_3(\mathbb{Z}) \), and \(\text{GL}_2(\mathbb{Z}) \) is generated by \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), which implies that we only need to prove the statement for \(A_1 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \) and \(A_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \). For \(A_1 \) we get \(2\mu' = 2\mu + 1 \), \(2\nu' = 2\nu \), so \(D^{c}_{\mu,\nu} \) and \(D^{c}_{\mu',\nu'} \) are isomorphic by Remark 2.1. Proposition 2.2 takes care of the case \(A = A_2 \), since then we have \((\mu', \nu') = (\frac{1}{4\nu} \frac{\mu}{2\nu}) \). \(\square \)

Notation 2.5. We denote by \(G_{\mu,\nu} \) the subgroup of \(\mathbb{R} \) generated by \(\{1, 2\mu, 2\nu\} \). It was shown in [Ab2] Theorem 3.16] that the homomorphism induced on \(K_0(D^{c}_{\mu,\nu}) \) by any tracial state on \(D^{c}_{\mu,\nu} \) has range \(G_{\mu,\nu} \).

Remark 2.6. If rank \(G_{\mu,\nu} = 2 \), then there exist an irrational number \(\nu' \) and integers \(p, q \in \mathbb{Z}, \ p \neq 0, (p, q) = 1 \), such that \(D^{c}_{\mu,\nu} \) and \(D^{c}_{\mu',\nu'} \) are isomorphic.

Proof. We proceed as in [Pa1] Proposition 1.5. Let \(\mu_0 = 2\mu, \nu_0 = 2\nu \). Since the group generated by \(\{1, \mu_0, \nu_0\} \) has rank 2, either \(\mu_0 \) or \(\nu_0 \) is irrational. We may assume that \(\nu_0 \) is irrational, because, by Remark 2.4, \(D^{c}_{\mu,\nu} \) and \(D^{c}_{\mu',\nu'} \) are isomorphic. Besides, there exist \(M, N, P \in \mathbb{Z}, \) with \(N \neq 0 \) such that \(M + N\mu_0 + P\nu_0 = 0 \), so we have \(\mu_0 = \frac{k}{l} \nu_0 + \frac{m}{n}, \) with \((k, l) = 1 \). If \(k = 0 \), then \(\mu_0 \in \mathbb{Q} \), and we are done. Otherwise take \(a, b \in \mathbb{Z} \) such that \(ak + bl = 1 \), so that \((\frac{-l}{a} \frac{k}{b}) \in \text{GL}_2(\mathbb{Z}) \), and set
\[
(\mu_0', \nu_0') = \left(\frac{-l}{a} \frac{k}{b} \right) (\mu_0, \nu_0).
\]
Then
\[
\mu_0' = -l(\frac{k}{l} \nu_0 + \frac{m}{n}) + k\nu_0 = \frac{-lm}{n} \in \mathbb{Q}
\]
and
\[
\nu_0' = a(\frac{k}{l} \nu_0 + \frac{m}{n}) + b\nu_0 = \frac{1}{l} \nu_0 + \frac{am}{n} \notin \mathbb{Q}.
\]
Let ν and D for Morita equivalent quantum Heisenberg manifolds, and:

Two quantum Heisenberg manifolds particular, for D which, as shown above, is Morita equivalent to ν and, if c is isomorphic.

Proposition 2.2 to (ν, q).

Proof. By Remark 2.1 we may assume that p and q are positive. By applying Proposition 2.2 to $(\mu, \nu) = (q/2, \nu)$, we get that $D_{0, \nu}^c \cong D_{q/2, \nu}^c$ is Morita equivalent to $D_{q, \nu}^c$, thus proving the proposition for $p = 1$. For $p > 1$, let $r_0 = q$, $r_1 = p$, and, if $r_{i+1} \neq 1$, define r_{i+2} by $r_i = m_{i+1}r_{i+1} + r_{i+2}$, where $0 \leq r_{i+2} < r_{i+1}$, and $m_{i+1} \in \mathbb{Z}$.

Actually, $r_{i+2} > 0$; otherwise r_{i+1} divides r_i, and it follows that r_{i+1} divides r_j for all $j \leq i$. In particular, r_{i+1} divides both p and q, which contradicts the fact that $r_{i+1} \neq 1$. Now, since $r_{i+1} < r_i$, there is an index i_0 for which $r_{i_0} = 1$.

On the other hand, it follows from Proposition 2.2 that, for any real number κ, $D_{r_0, \nu}^c \cong D_{r_1, \nu}^c \cong D_{r_2, \nu}^c \cdots$ is Morita equivalent to $D_{r_0, \nu}^c \cong D_{r_1, \nu}^c \cong D_{r_2, \nu}^c \cdots$, which is Morita equivalent to $D_{0, \nu}^c$.

Theorem 2.8. Two quantum Heisenberg manifolds $D_{\mu, \nu}^c, D_{\mu', \nu'}^c$ are Morita equivalent if and only if $c = c'$ and there exists a positive real number r such that

$Z + 2\mu Z + 2\nu Z = r(Z + 2\mu' Z + 2\nu' Z)$.

In particular, the rank of the free abelian group $G_{\mu, \nu}$ is the same for Morita equivalent quantum Heisenberg manifolds, and:

1. If rank $G_{\mu, \nu} = 1$ = rank $G_{\mu', \nu'}$, then $D_{\mu, \nu}^c$ is Morita equivalent to $D_{\mu', \nu'}^c$. In particular, $D_{\mu, \nu}^c$ is Morita equivalent to the commutative Heisenberg manifold $D_{0, \nu}^c$.

2. If rank $G_{\mu, \nu} = 2$ = rank $G_{\mu', \nu'}$, let $\{\alpha, \frac{q}{q'}\}$ and $\{\alpha', \frac{q}{q'}\}$ be bases of $G_{\mu, \nu}$ and $G_{\mu', \nu'}$, respectively, where α and α' are irrational numbers and $p, p', q, q' \in \mathbb{Z}$, $(p, q) = (p', q') = 1$. Then $D_{\mu, \nu}^c$ and $D_{\mu', \nu'}^c$ are Morita equivalent if and only if there exists $\left(\begin{array}{cc}a & b \\c & d \end{array}\right) \in GL_2(\mathbb{Z})$ such that

$q' \alpha' = \frac{aqd + b}{cqd + d}$.

In particular, $D_{\mu, \nu}^c$ is Morita equivalent to $D_{0, \nu}^c$.

3. If rank $G_{\mu, \nu} = 3$ = rank $G_{\mu', \nu'}$, then $D_{\mu, \nu}^c$ and $D_{\mu', \nu'}^c$ are Morita equivalent if and only if there exists $\left(\begin{array}{ccc}a & b & c \\g & h & i \end{array}\right) \in GL_3(\mathbb{Z})$ such that

$2\mu' = \frac{2a\mu + 2b\nu + c}{2g\mu + 2h\nu + i}$ and $2\nu' = \frac{2d\mu + 2e\nu + f}{2g\mu + 2h\nu + i}$.

Proof. It was shown in [Ab1, 3.4] that $K_0(D_{\mu, \nu}^c) = \mathbb{Z}^3 \oplus \mathbb{Z}_c$, which implies that $D_{\mu, \nu}^c$ and $D_{\mu', \nu'}^c$ are not Morita equivalent for $c \neq c'$.
Besides ([Ab2] Theorem 3.16), all tracial states on $D_{\mu\nu}^c$ induce the same homomorphism on $K_0(D_{\mu\nu}^c)$, whose range is the group $G_{\mu\nu} = 2\mu\mathbb{Z} + 2\nu\mathbb{Z} + \mathbb{Z}$. Since ([Re1] 2.2) there is a bijection between finite traces of Morita equivalent unital C*-algebras, we must have $G_{\mu\nu} = rG_{\mu'\nu'}$ for some positive real number r when $D_{\mu\nu}^c$ and $D_{\mu'\nu'}^c$ are Morita equivalent. An immediate consequence of this fact is that the rank of $G_{\mu\nu}$ is invariant under Morita equivalence.

If rank $G_{\mu\nu} = 1$, then, by [Ab2, Remark 3.5], $D_{\mu\nu}^c$ is isomorphic to $D_{0,0}^c$ for some non-zero integer p, so $D_{\mu\nu}^c$ is isomorphic to $D_{0,0}^c$ by Remark 2.1. Now, by Proposition 2.7, $D_{0,0}^c$ is Morita equivalent $D_{0,0}^c$.

If rank $G_{\mu\nu} = 2$ = rank $G_{\mu'\nu'}$ and $G_{\mu\nu} = rG_{\mu'\nu'}$ for some positive r, let $\{\alpha, \frac{q}{r}\}$ and $\{\alpha', \frac{q'}{r}\}$ be bases of $G_{\mu\nu}$ and $G_{\mu'\nu'}$, respectively, where α, α' are irrational numbers, and p, p', q, q' are integers, with $(p, q) = (p', q') = 1$. Since $\mathbb{Z} \subseteq G_{\mu\nu} (G_{\mu'\nu'})$ we have that $p(p') = \pm 1$ and, by Remark 2.1, we may assume $p = p' = 1$. Then we have that $\alpha Z + 1/qZ = r(\alpha' Z + 1/q' Z)$, which implies that $\alpha qZ + Z = (rq/q')(\alpha' q' Z + Z)$. A standard argument shows that

$$q\alpha = \frac{aq\alpha' + b}{cq\alpha' + d} \text{ for some } \left(\begin{array}{cc}a & b \\c & d \end{array}\right) \in \text{GL}_{2}(\mathbb{Z}).$$

Therefore $D_{0,0}^c$ and $D_{0,0}^c$ are Morita equivalent by Corollary 2.3.

On the other hand, by Remark 2.6, $D_{\mu\nu}^c$ and $D_{\mu'\nu'}^c$ are isomorphic, respectively, to $D_{m,n}^c$ and $D_{m',n'}^c$, for some irrational numbers β and β' and integers m, m', n, n' such that $(m, n) = (m', n') = 1$. Therefore $\{2\beta, \frac{1}{m}\}$ and $\{2\beta', \frac{1}{m}\}$ are bases of $G_{\mu\nu}$ and $G_{\mu'\nu'}$, respectively, and it follows from the argument above that $D_{n,0}^c$ and $D_{n',0}^c$ are Morita equivalent. It only remains to note now that, by Proposition 2.7 and Remark 2.1, $D_{n,0}^c$ and $D_{n',0}^c$ are Morita equivalent to $D_{\mu\nu}^c$ and $D_{\mu'\nu'}^c$, respectively.

Finally, if rank $G_{\mu\nu} = 3$ = rank $G_{\mu'\nu'}$ and $G_{\mu\nu} = rG_{\mu'\nu'}$ for some positive r, then let $A = \left(\begin{array}{ccc}a & b & c \\d & e & f \\g & h & i \end{array}\right) \in \text{GL}_{3}(\mathbb{Z})$ be the transpose of the matrix that changes coordinates between the bases $\{2r\mu', 2r'\nu', r\}$ and $\{2\mu, 2\nu, 1\}$ of $G_{\mu\nu}$. Then

$$2\mu' = \frac{2a\mu + 2b\nu + c}{2g\mu + 2h\nu + i} \text{ and } 2\nu' = \frac{2d\mu + 2e\nu + f}{2g\mu + 2h\nu + i},$$

which implies, by Proposition 2.4, that $D_{\mu\nu}^c$ and $D_{\mu'\nu'}^c$ are Morita equivalent. □

References

Centro de Matemáticas, Facultad de Ciencias, Iguá 4225, CP 11 400, Montevideo, Uruguay
E-mail address: abadie@cmat.edu.uy