THE BANACH-ZARECKI THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES

JAKUB DUDA AND LUDĚK ZAJÍČEK

(Communicated by Jonathan M. Borwein)

Abstract. Using an old result of Luzin about his property (N), we prove a general version of the Banach-Zarecki theorem (on absolute continuity and Luzin’s property (N)).

We prove a general version of the Banach-Zarecki theorem (see the Theorem below) about absolute continuity and Luzin’s property (N). The original version for real-valued functions of a real variable was proved by Banach and independently by Zarecki (cf. [N]). For functions of a real variable with values in reflexive Banach spaces, the result is contained in [F, Theorem 2.10.13] with a sketch of the proof which also works if X has the Radon-Nikodým property. We observe that the general case of a function of a real variable with values in a metric space follows by an old result of Luzin [L] (see text after (1)).

By λ we shall denote the Lebesgue measure on R and by \mathcal{H}^1 we denote the 1-dimensional Hausdorff measure.

Let (X, ρ) be a metric space and let $f : [0,1] \to X$ be a function. We say that f is absolutely continuous if for each $\varepsilon > 0$ there is a $\delta > 0$ such that for any

$$0 \leq a_1 < b_1 \leq a_2 < \cdots \leq a_n < b_n \leq 1$$

with $\sum_{i=1}^n (b_i - a_i) < \delta$ we have $\sum_{i=1}^n \rho(f(b_i), f(a_i)) < \varepsilon$. The symbol $\var{f}{[c,d]}^d$ stands for the variation of f on $[c,d] \subset [0,1]$. We say that f has (Luzin’s) property (N) provided

$$\mathcal{H}^1(f(B)) = 0 \quad \text{whenever} \quad B \subset [0,1] \text{ with } \lambda(B) = 0.$$ \hspace{1cm} (1)

Luzin [L, §47] proved that if $X = \mathbb{R}$ and f is continuous, then we obtain the same notion if we only use closed sets B in (1). (See [F] and [HPZZ] for proofs of more general results.)

Received by the editors August 17, 2004.

2000 Mathematics Subject Classification. Primary 26A46; Secondary 26E20.

Key words and phrases. Absolutely continuous functions, Luzin’s property (N), Banach-Zarecki Theorem.

The first author was supported by the grant GAČR 201/03/0931.

The second author was supported by the grants MSM 113200007 and GAČR 201/03/0931.
We shall also need the following simple lemma.

Lemma. Let \((X, \rho)\) be a metric space, let \(\{0, 1\} \subset B \subset [0, 1]\) be closed, and let \(f : [0, 1] \to X\) be continuous. If \(\mathcal{H}^1(f(B)) = 0\), then
\[
\sup_i \int_0^1 f \, d\rho_i = \sum_{i \in I} d_i,
\]
where \(I_i = (c_i, d_i) (i \in I \subset \mathbb{N})\) are all (pairwise different) components of \([0, 1] \setminus B\).

Proof. We can embed the metric space \(X\) isometrically into a Banach space (see e.g. [BL, Lemma 1.1]). Put \(\langle f \rangle := f([0, 1])\) and, for each \(A \subset [0, 1]\) and \(y \in X\), define
\[
N(f|_A, y) = \text{card}(\{x \in A : f(x) = y\}).
\]
Using the vector version of the Banach indicatrix theorem ([F, Theorem 2.10.13]) and the obvious equality \(N(f, y) = \sum_{i \in I} N(f|_{I_i}, y)\) for \(y \in \langle f \rangle \setminus f(B)\), we obtain
\[
\sup_i \int_0^1 f \, d\rho_i = \int_{\langle f \rangle \setminus f(B)} N(f, y) \, d\mathcal{H}^1 y = \sum_{i \in I} \int_{\langle f \rangle \setminus f(B)} N(f|_{I_i}, y) \, d\mathcal{H}^1 y = \sum_{i \in I} d_i.
\]

Now we can easily prove the general Banach-Zarecki theorem.

Theorem. Let \((X, \rho)\) be a metric space, and let \(f : [0, 1] \to X\). Then the following are equivalent:

(i) \(f\) is absolutely continuous;
(ii) \(f\) is continuous, has bounded variation and satisfies property \((N)\).

Proof. It is easy to see that (i) \(\implies\) (ii). For a proof of property \((N)\) we can just follow the standard “scalar” proof of [S, Theorem 6.1] with obvious modifications (namely writing \(\text{Osc}(H \cap I_n)\) instead of \(M(H \cap I_n) - m(H \cap I_n)\) and \(\text{diam}(F(H \cap I_n))\) instead of \(|F(F(H))|\)).

Now suppose that (ii) holds. For \(x \in [0, 1]\) we define \(v_f(x) = \sqrt{x} f\). Since clearly \(\rho(f(x), f(y)) \leq |v_f(x) - v_f(y)|\), we easily see that it is sufficient to prove absolute continuity of \(v_f\). To prove that, it’s enough (since \(v_f\) is non-decreasing and continuous by [F, §2.5.16]) to establish that \(v_f\) has property \((N)\) and apply the scalar version of the Banach-Zarecki Theorem (see e.g. [V, Theorem 3] or [F, 2.10.13]). By Luzin’s theorem mentioned in the text following [1], it is enough to prove that \(\lambda(v_f(B)) = 0\) for any closed \(B \subset [0, 1]\) with \(\lambda(B) = 0\). Without any loss of generality, we can assume that \(\{0, 1\} \subset B\). Since \(f\) has property \((N)\), we have \(\mathcal{H}^1(f(B)) = 0\). Let \(I_i = (c_i, d_i) (i \in I \subset \mathbb{N})\) be all (pairwise different) components of \([0, 1] \setminus B\). The Lemma shows that
\[
\lambda(v_f(\bigcup_{i \in I} I_i)) = \lambda\left(\bigcup_{i \in I} (v_f(I_i))\right) = \sum_{i \in I} (v_f(d_i) - v_f(c_i)) = \sup_i \int_0^1 f \, d\rho_i = \lambda(v_f([0, 1])),
\]
as v_f is continuous non-decreasing and $v_f(d_i) - v_f(c_i) = \bigvee_{i \in I} f$ for $i \in I$. Observing that $v_f(B) \cap v_f(\bigcup_{i \in I} I_i)$ is countable, we obtain
\[
\lambda(v_f(B)) = \lambda(v_f([0,1]) \setminus v_f(\bigcup_{i} I_i)) = 0,
\]
which completes the proof. \hfill \Box

References

Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

E-mail address: jakub.duda@weizmann.ac.il

Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail address: zajicek@karlin.mff.cuni.cz