Geometric criteria for the nonexistence of cycles in Gause-type predator-prey systems
HTML articles powered by AMS MathViewer
- by Yaping Liu
- Proc. Amer. Math. Soc. 133 (2005), 3619-3626
- DOI: https://doi.org/10.1090/S0002-9939-05-08026-3
- Published electronically: June 8, 2005
- PDF | Request permission
Abstract:
The global stability of a multi-species interacting system has apparently important biological implications. In this paper we study the global stability of Gause-type predator-prey models by providing new criteria for the nonexistence of cycles and limit cycles. Our criteria have clear geometrical interpretations and are easier to apply than other methods employed in recent studies. Using these criteria and related techniques we are able to develop new results on the existence and uniqueness of cycles in Gause-type models with various growth and response functions.References
- Kuo Shung Cheng, Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal. 12 (1981), no. 4, 541–548. MR 617713, DOI 10.1137/0512047
- Kuo Shung Chêng, Sze Bi Hsu, and Song Sun Lin, Some results on global stability of a predator-prey system, J. Math. Biol. 12 (1981), no. 1, 115–126. MR 631003, DOI 10.1007/BF00275207
- Sun Hong Ding, On a kind of predator-prey system, SIAM J. Math. Anal. 20 (1989), no. 6, 1426–1435. MR 1019308, DOI 10.1137/0520092
- Freedman, H. I. (1987), Deterministic Mathematical Models in Population Ecology, 2nd ed., HIFR Consulting LTD, Edmonton, Canada.
- Narendra S. Goel, Samaresh C. Maitra, and Elliott W. Montroll, On the Volterra and other nonlinear models of interacting populations, Rev. Modern Phys. 43 (1971), 231–276. MR 0484546, DOI 10.1103/RevModPhys.43.231
- Josef Hofbauer and Joseph W.-H. So, Multiple limit cycles for predator-prey models, Math. Biosci. 99 (1990), no. 1, 71–75. MR 1055740, DOI 10.1016/0025-5564(90)90139-P
- S. B. Hsu, On global stability of a predator-prey system, Math. Biosci. 39 (1978), no. 1-2, 1–10. MR 472126, DOI 10.1016/0025-5564(78)90025-1
- Xun Cheng Huang and Stephen J. Merrill, Conditions for uniqueness of limit cycles in general predator-prey systems, Math. Biosci. 96 (1989), no. 1, 47–60. MR 1013301, DOI 10.1016/0025-5564(89)90082-5
- Kolmogorov, A. (1936), “Sulla teoria di Volterra della lotta per l’esistenza," Gi. Inst. Ital. Attuari, 7, 74-80.
- R. E. Kooij and A. Zegeling, Qualitative properties of two-dimensional predator-prey systems, Nonlinear Anal. 29 (1997), no. 6, 693–715. MR 1452753, DOI 10.1016/S0362-546X(96)00068-5
- Y. Kuang, Global stability of Gause-type predator-prey systems, J. Math. Biol. 28 (1990), no. 4, 463–474. MR 1057049, DOI 10.1007/BF00178329
- Yang Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Math. Biosci. 88 (1988), no. 1, 67–84. MR 930003, DOI 10.1016/0025-5564(88)90049-1
- Torsten Lindström, A generalized uniqueness theorem for limit cycles in a predator-prey system, Acta Acad. Åbo. Ser. B 49 (1989), no. 2, 9. MR 1041880
- S. M. Moghadas, Some conditions for the nonexistence of limit cycles in a predator-prey system, Appl. Anal. 81 (2002), no. 1, 51–67. MR 1926801, DOI 10.1080/0003681021000021060
- Rosenzweig, M. L. (1971), “Paradox of enrichment: destabilization of exploitation ecosystems in ecological time," Science, 171, 385-387.
- Shigui Ruan and Dongmei Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math. 61 (2000/01), no. 4, 1445–1472. MR 1813689, DOI 10.1137/S0036139999361896
- Jitsuro Sugie, Two-parameter bifurcation in a predator-prey system of Ivlev type, J. Math. Anal. Appl. 217 (1998), no. 2, 349–371. MR 1492094, DOI 10.1006/jmaa.1997.5700
- Jitsuro Sugie and Masaki Katayama, Global asymptotic stability of a predator-prey system of Holling type, Nonlinear Anal. 38 (1999), no. 1, Ser. B: Real World Appl., 105–121. MR 1693000, DOI 10.1016/S0362-546X(99)00099-1
- Jitsuro Sugie, Rie Kohno, and Rinko Miyazaki, On a predator-prey system of Holling type, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2041–2050. MR 1396998, DOI 10.1090/S0002-9939-97-03901-4
- G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defence, SIAM J. Appl. Math. 48 (1988), no. 3, 592–606. MR 941102, DOI 10.1137/0148033
- Dongmei Xiao and Zhifeng Zhang, On the uniqueness and nonexistence of limit cycles for predator-prey systems, Nonlinearity 16 (2003), no. 3, 1185–1201. MR 1975802, DOI 10.1088/0951-7715/16/3/321
Bibliographic Information
- Yaping Liu
- Affiliation: Department of Mathematics, Pittsburg State University, Pittsburg, Kansas 66762
- Email: yliu@pittstate.edu
- Received by editor(s): August 13, 2004
- Published electronically: June 8, 2005
- Communicated by: Carmen C. Chicone
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 3619-3626
- MSC (2000): Primary 34D23; Secondary 34C07, 92D25
- DOI: https://doi.org/10.1090/S0002-9939-05-08026-3
- MathSciNet review: 2163598