ADDENDUM TO “DENSE SUBSETS OF THE BOUNDARY OF A COXETER SYSTEM”

TETSUYA HOSAKA

(Communicated by Alexander N. Dranishnikov)

ABSTRACT. In this paper, we investigate boundaries of parabolic subgroups of Coxeter groups. Let (W, S) be a Coxeter system and let T be a subset of S such that the parabolic subgroup W_T is infinite. Then we show that if a certain set is quasi-dense in W, then $W\partial\Sigma(W_T, T)$ is dense in the boundary $\partial\Sigma(W, S)$ of the Coxeter system (W, S), where $\partial\Sigma(W_T, T)$ is the boundary of (W_T, T).

1. INTRODUCTION AND PRELIMINARIES

The purpose of this paper is to study boundaries of parabolic subgroups of Coxeter groups. In this paper, we use the same notation as [5] and [6]. Every Coxeter system (W, S) determines a Davis-Moussong complex $\Sigma(W, S)$ which is a CAT(0) geodesic space ([2], [3], [4], [7]). If W is infinite, then $\Sigma(W, S)$ is noncompact and $\Sigma(W, S)$ can be compactified by adding its ideal boundary $\partial\Sigma(W, S)$ ([1], [3], [4]). For each subset $T \subset S$, we consider the parabolic subgroup W_T generated by T. Then $\Sigma(W_T, T)$ is a subcomplex of $\Sigma(W, S)$ and the boundary $\partial\Sigma(W_T, T)$ of (W_T, T) is a subspace of $\partial\Sigma(W, S)$.

The purpose of this paper is to prove the following theorem.

Theorem 1.1. Let (W, S) be a Coxeter system and let T be a subset of S such that W_T is infinite. If the set

$$\bigcup\{W(s) \mid s \in S \text{ such that } o(ss_0) = \infty \text{ and } s_0 t \neq t s_0 \text{ for some } s_0 \in S \setminus T \text{ and } t \in \tilde{T}\}$$

is quasi-dense in W with respect to the word metric, then $W\partial\Sigma(W_T, T)$ is dense in $\partial\Sigma(W, S)$, where W_T is the essential parabolic subgroup of (W_T, T).

Remark. For a Gromov hyperbolic group G and the boundary ∂G of G, we can show that $G\alpha$ is dense in ∂G for any $\alpha \in \partial G$ by an easy argument. Hence if W is a hyperbolic Coxeter group, then $W\partial\Sigma(W_T, T)$ is dense in $\partial\Sigma(W, S)$ for any $T \subset S$ such that W_T is infinite.

Received by the editors July 5, 2004 and, in revised form, September 12, 2004 and October 5, 2004.

2000 Mathematics Subject Classification. Primary 57M07, 20F65, 20F55.

Key words and phrases. Boundaries of Coxeter groups.

The author was partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 15740029).

©2005 American Mathematical Society
Reverts to public domain 28 years from publication

3745
As an application of Theorem 1.1 we obtain the following corollary.

Corollary 1.2. Let \((W, S)\) be a Coxeter system and let \(T\) be a subset of \(S\) such that \(W_T\) is infinite. Suppose that there exist a maximal spherical subset \(U\) of \(S\) and an element \(s \in S\) such that \(o(su) \geq 3\) for every \(u \in U\) and \(o(su_0) = \infty\) for some \(u_0 \in U\). If

1. \(s \notin T\) and \(u_0 \in \tilde{T}\), or
2. \(u_0 \notin T\) and \(s \in \tilde{T}\),

then \(W \partial \Sigma(W_T, T)\) is dense in \(\partial \Sigma(W, S)\).

Here the following problem is open.

Problem. Let \((W, S)\) be a Coxeter system and let \(T\) be a subset of \(S\) such that \(W_T\) is infinite. Is it the case that if \(\partial \Sigma(W_T, T)\) is not \(W\)-invariant, then \(W \partial \Sigma(W_T, T)\) is dense in \(\partial \Sigma(W, S)\)? Particularly, is it the case that if \((W, S)\) is an irreducible Coxeter system, then \(W \partial \Sigma(W_T, T)\) is dense in \(\partial \Sigma(W, S)\) for any subset \(T\) of \(S\) such that \(W_T\) is infinite?

2. Proof of the main results

Using some results in \([5]\) and \([6]\), we first prove the following lemma.

Lemma 2.1. Let \((W, S)\) be a Coxeter system, let \(T\) be a proper subset of \(S\) such that \(W_T\) is infinite, and let

\[U = \{s \in S \setminus T \mid W^{(s)}s \cap W_T \text{ is finite}\}. \]

Then \(W_{\tilde{T} \cup U} = W_{\tilde{T}} \times W_U\).

Proof. We note that \(S(w) \subset T\) for \(w \in W_T\). Let \(u_0 \in U\) and let \(T(u_0) = \{ t \in T \mid tu_0 \neq ut\}\). We first show that \(W_T \setminus T(u_0)\) is a subgroup of finite index in \(W_T\). Here we note that \(|W_T : W_T \setminus T(u_0)| = |A_{T(u_0)}| \cap W_T|\) by \([5]\) Lemma 2.4. Then

\[
\bigcup_{T' \subset T(u_0)} (W_T)^{T'} = \{ w \in W_T \mid S(w) \subset T(u_0) \}
= \{ w \in W_T \mid T \setminus T(u_0) \subset T \setminus S(w) \}
= A_{T(u_0)} \cap W_T.
\]

We show that \((W_T)^{T'}\) is finite for any \(T' \subset T(u_0)\). Let \(T' \subset T(u_0)\). Since \(tu_0 \neq ut\) for any \(t \in T', (W_T)^{T'}u_0 \subset W^{(u_0)}\) by \([5]\) Lemma 2.7. Hence \((W_T)^{T'} \subset W^{(u_0)}u_0 \cap W_T\), which is finite because \(u_0 \in U\). Thus \((W_T)^{T'}\) is finite for any \(T' \subset T(u_0)\), and \(|W_T : W_T \setminus T(u_0)| = |A_{T(u_0)}| \cap W_T|\) is finite. By \([5]\) Corollary 3.4, \(\tilde{T} \subset T \setminus T(u_0)\). Hence \(T(u_0) \subset T \setminus \tilde{T}\) for any \(u_0 \in U\). Let \(A = \{ t \in T \mid tu_0 \neq ut\} \) for some \(u_0 \in U\). Then \(A = \bigcup_{u_0 \in U} T(u_0) \subset T \setminus \tilde{T}\) and

\[\tilde{T} \subset T \setminus A = \{ t \in T \mid tu = ut \text{ for every } u \in U\}. \]

Thus \(tu = ut\) for any \(t \in \tilde{T}\) and \(u \in U\). This means that \(W_{\tilde{T} \cup U} = W_{\tilde{T}} \times W_U\). \(\square\)

Using the above lemma, we prove the main results.

Proof of Theorem 1.1 Suppose that

\[A := \bigcup \{ W^{(s)} \mid s \in S \text{ such that } o(ss_0) = \infty \text{ and } s_0t \neq ts_0 \}
\text{ for some } s_0 \in S \setminus T \text{ and } t \in \tilde{T}\}

is quasi-dense in \(W\).
We first show that for each \(w \in A \), there exists \(v \in W \) and \(\alpha \in \partial \Sigma(W, T) \) such that \(d(w, \text{Im} \xi_{\alpha}) \leq N \), where \(N \) is the diameter of \(K(W, S) \) in \(\Sigma(W, S) \) and \(\xi_{\alpha} \) is the geodesic ray issuing from 1 such that \(\xi_{\alpha}(\infty) = \alpha \).

Let \(w \in A \). Then \(w \in W^s \), \(o(s_0) = \infty \) and \(s_0 t \neq s_0 \) for some \(s \in S \), \(s_0 \in S \setminus T \) and \(t \in \hat{T} \). By Lemma 2.1, \(W^{(s_0)} \cap W_T \) is infinite. Hence there exists a sequence \(\{x_i\} \subset (W^{(s_0)} \cap W_T)^{-1} \) which converges to some point \(\alpha \in \partial \Sigma(W, T) \). Since \(x_i \in (W^{(s_0)} \cap W_T)^{-1} \), \((s_0 x_i)^{-1} = x_i^{-1} s_0 \in W^{(s_0)} \). By [6, Lemma 3.3], \(d(w, \text{Im} \xi_{w, s_0}) \leq N \) for any \(i \) because \(w \in W^s \), \(s_0 x_i \in (W^{(s_0)} \cap W_T)^{-1} \) and \(o(s_0) = \infty \). Hence \(d(w, \text{Im} \xi_{w, s_0}) \leq N \).

For each \(\beta \in \partial \Sigma(W, S) \), there exists a sequence \(\{w_i\} \subset A \) which converges to \(\beta \), because \(A \) is quasi-dense in \(W \). By the above argument, there exist sequences \(\{v_i\} \subset W \) and \(\{t_i\} \subset \partial \Sigma(W, T) \) such that \(d(w_i, \text{Im} \xi_{v_i, t_i}) \leq N \) for each \(i \). Then the sequence \(\{w_i t_i\} \) converges to \(\beta \) in \(\partial \Sigma(W, S) \) because \(\{w_i\} \) converges to \(\beta \). Therefore \(W \partial \Sigma(W, T) \) is dense in \(\partial \Sigma(W, S) \).

Proof of Corollary 1.2. Suppose that there exist a maximal spherical subset \(U \) of \(S \) and an element \(s \in S \) such that \(o(su) \geq 3 \) for any \(u \in U \) and \(o(su_0) = \infty \) for some \(u_0 \in U \). Then \(W^s \) is quasi-dense in \(W \) by [6, Lemma 2.5].

(1) If \(s \not\in T \) and \(u_0 \in \hat{T} \), then \(W^{(u_0)} \) is quasi-dense in \(W \) because \(W^s u_0 \subset W^{(u_0)} \) by [6, Lemma 2.4]. Hence \(W \partial \Sigma(W, T) \) is dense in \(\partial \Sigma(W, S) \) by Theorem 1.1.

(2) If \(u_0 \not\in T \) and \(s \in \hat{T} \), then by Theorem 1.1 \(W \partial \Sigma(W, T) \) is dense in \(\partial \Sigma(W, S) \), because \(o(su_0) = \infty \), \(u_0 \in S \setminus T \) and \(s \in \hat{T} \).

Acknowledgments

The author would like to thank the referee for helpful advice.

References

DEPARTMENT OF MATHEMATICS, UTSUNOMIYA UNIVERSITY, UTSUNOMIYA, 321-8505, JAPAN

E-mail address: hosaka@cc.utsunomiya-u.ac.jp