Self-commutator approximants
HTML articles powered by AMS MathViewer
- by P. J. Maher
- Proc. Amer. Math. Soc. 134 (2006), 157-165
- DOI: https://doi.org/10.1090/S0002-9939-05-07871-8
- Published electronically: August 15, 2005
- PDF | Request permission
Abstract:
This paper deals with minimizing $\| B - (X^* X - X X^*) \|_p$, where $B$ is fixed, self-adjoint and $B \in \mathcal {C}_p$, and where $X$ varies such that $BX = XB$ and $X^* X - X X^* \in \mathcal {C}_p$, $1 \leq p < \infty$. (Here, $\mathcal {C}_p$, $1 \leq p < \infty$, denotes the von Neumann-Schatten class and $\| \cdot \|_p$ its norm.) The upshot of this paper is that $\| B - (X^* X - X X^*) \|_p$, $1 \leq p < \infty$, is minimized if, and for $1 < p < \infty$ only if, $X^* X - X X^* = 0$, and that the map $X \rightarrow \| B - (X^* X - X X^*) \|_p^p$, $1 < p < \infty$, has a critical point at $X = V$ if and only if $V^* V - V V^* = 0$ (with related results for normal $B$ if $p = 1$ or $2$).References
- John G. Aiken, John A. Erdos, and Jerome A. Goldstein, Unitary approximation of positive operators, Illinois J. Math. 24 (1980), no. 1, 61–72. MR 550652
- Joel Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135–140. MR 312313, DOI 10.1090/S0002-9939-1973-0312313-6
- H. Berens and M. Finzel, A problem in linear matrix approximation, Math. Nachr. 175 (1995), 33–46. MR 1355011, DOI 10.1002/mana.19951750104
- S. Bouali and S. Cherki, Approximation by generalized commutators, Acta Sci. Math. (Szeged) 63 (1997), no. 1-2, 273–278. MR 1459791
- B. P. Duggal, A remark on normal derivations, Proc. Amer. Math. Soc. 126 (1998), no. 7, 2047–2052. MR 1451795, DOI 10.1090/S0002-9939-98-04326-3
- B. P. Duggal, Range kernel orthogonality of derivations, Linear Algebra Appl. 304 (2000), no. 1-3, 103–108. MR 1734207, DOI 10.1016/S0024-3795(99)00193-7
- N. Dunford and J. T. Schwarz, Linear operators, part II, Interscience, New York, 1964.
- J. A. Erdos, On the trace of a trace class operator, Bull. London Math. Soc. 6 (1974), 47–50. MR 370246, DOI 10.1112/blms/6.1.47
- Paul R. Halmos, Commutators of operators. II, Amer. J. Math. 76 (1954), 191–198. MR 59484, DOI 10.2307/2372409
- P. R. Halmos, Positive approximants of operators, Indiana Univ. Math. J. 21 (1971/72), 951–960. MR 291829, DOI 10.1512/iumj.1972.21.21076
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952, DOI 10.1007/978-1-4684-9330-6
- Fuad Kittaneh, Normal derivations in norm ideals, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1779–1785. MR 1242091, DOI 10.1090/S0002-9939-1995-1242091-2
- Fuad Kittaneh, Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl. 203 (1996), no. 3, 868–873. MR 1417136, DOI 10.1006/jmaa.1996.0418
- P. J. Maher, Partially isometric approximation of positive operators, Illinois J. Math. 33 (1989), no. 2, 227–243. MR 987820, DOI 10.1215/ijm/1255988721
- P. J. Maher, Commutator approximants, Proc. Amer. Math. Soc. 115 (1992), no. 4, 995–1000. MR 1086335, DOI 10.1090/S0002-9939-1992-1086335-6
- Salah Mecheri, On minimizing $\|S-(AX-XB)\|_p^p$, Serdica Math. J. 26 (2000), no. 2, 119–126. MR 1794930
- —, Another version of Maher’s inequality, submitted, 2005.
- J. R. Ringrose, Compact non-self-adjoint operators, Van Nostrand Rheinhold, London, 1971 .
- Helmut Wielandt, Über die Unbeschränktheit der Operatoren der Quantenmechanik, Math. Ann. 121 (1949), 21 (German). MR 30701, DOI 10.1007/BF01329611
- Aurel Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. (2) 71 (1947), 738–739. MR 20724, DOI 10.1103/PhysRev.71.738.2
Bibliographic Information
- P. J. Maher
- Affiliation: Department of Mathematics, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
- Email: p.maher@mdx.ac.uk
- Received by editor(s): March 5, 2003
- Received by editor(s) in revised form: March 25, 2004
- Published electronically: August 15, 2005
- Communicated by: Joseph A. Ball
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 134 (2006), 157-165
- MSC (2000): Primary 47B20, 47A30; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-05-07871-8
- MathSciNet review: 2170555