SELF-COMMUTATOR APPROXIMANTS

P. J. MAHER

(Communicated by Joseph A. Ball)

Abstract. This paper deals with minimizing \(\| B - (X^*X - XX^*) \|_p \), where \(B \) is fixed, self-adjoint and \(B \in C_p \), and where \(X \) varies such that \(BX = XB \) and \(X^*X - XX^* \in C_p \), \(1 \leq p < \infty \). (Here, \(C_p \), \(1 \leq p < \infty \), denotes the von Neumann-Schatten class and \(\| \cdot \|_p \) its norm.) The upshot of this paper is that \(\| B - (X^*X - XX^*) \|_p \), \(1 \leq p < \infty \), is minimized if, and for \(1 < p < \infty \) only if, \(X^*X - XX^* = 0 \), and that the map \(X \rightarrow \| B - (X^*X - XX^*) \|_p \), \(1 < p < \infty \), has a critical point at \(X = V \) if and only if \(V^*V - VV^* = 0 \) (with related results for normal \(B \) if \(p = 1 \) or \(2 \)).

1. Introduction

This paper is concerned with approximating an operator by a self-commutator \(X^*X - XX^* \) of operators. We study minimizing the quantity

\[\| B - (X^*X - XX^*) \|_p, \quad 1 \leq p < \infty, \]

for fixed \(B \) in \(C_p \) and varying \(X \) such that \(X^*X - XX^* \in C_p \). (Here \(C_p \) denotes the von Neumann-Schatten class with norm \(\| \cdot \|_p \), where \(1 \leq p < \infty \).)

The related topic of approximation by commutators \(AX -XA \), which has attracted much interest, has its roots in quantum theory. The Heisenberg Uncertainty Principle may be mathematically formulated as saying that there exists a pair \(A, X \) of linear transformations and a (non-zero) scalar \(\alpha \) for which

\[AX -XA = \alpha I. \]

Clearly, (1.1) cannot hold for square matrices \(A \) and \(X \). (To see this, just take the trace of both sides of (1.1).) Nor can (1.1) hold for bounded linear operators \(A \) and \(X \): two beautiful proofs of this are due to Wielandt [19] and Wintner [20]. This prompts the question: how close can \(AX -XA \) be to the identity?

Halmos [9, Problem 233] proved that if \(A \) is normal, or if \(A \) commutes with \(AX -XA \), then, for all \(X \) in \(\mathcal{L}(H) \),

\[\| I - (AX -XA) \| \geq \| I \|. \]

Anderson [2 Theorem 1.7] generalized Halmos’ inequality (1.2): he proved that if \(A \) is normal and commutes with \(B \), then, for all \(X \) in \(\mathcal{L}(H) \),

\[\| B - (AX -XA) \| \geq \| B \|. \]

Received by the editors March 5, 2003 and, in revised form, March 25, 2004.

2000 Mathematics Subject Classification. Primary 47B20, 47A30; Secondary 47B10.

Key words and phrases. Self-commutator, von Neumann-Schatten class.
Maher [15, Theorem 3.2] obtained the C_p variant of Anderson’s result: he proved that if the normal operator A commutes with B and if $B \in C_p$, then, for all X such that $AX -XA \in C_p$,
\[
\|B - (AX -XA)\|_p \geq \|B\|_p, \quad 1 \leq p < \infty,
\]
with equality in (1.4) if, and for $1 < p < \infty$ only if, $AX -XA = 0$.

Using the technique of [15], Bouli and Cherki [4] and Mercheri [16] studied approximation by “generalized commutators” $AX -XC$. They proved [10, Theorem 2.2], [16, Theorem 3.7] that if $B \in C_p$, if $AB = BC$ and if the pair (A, C) has the Putnam-Fuglede C_p property (meaning that $AX = XC \Rightarrow A^*X = XC^*$ if $X \in C_p$), then, for all X such that $AX -X C \in C_p$,
\[
\|B - (AX -XC)\|_p \geq \|B\|_p, \quad 1 \leq p < \infty,
\]
with equality if, and for $1 < p < \infty$ only if, $AX -XC = 0$. (Other related work includes that of Berens and Finzel [3], Duggal [4, 6], Kittaneh [12, 13] and Mercheri [17, 18].)

In the above results (1.2), (1.3) and (1.4), the zero commutator is, to use Halmos’ terminology [10], a commutator approximant in C_p (and similarly, cf. (1.5) for generalised commutators). Here, we frame hypotheses so that the zero self-commutator, likewise, minimizes the quantity $\|B - (X^*X - XX^*)\|_p$. Since a global minimizer is a critical point, we study the local behaviour of the map
\[
F_p: X \to \|B - (X^*X - XX^*)\|_p.
\]
We consider the critical points of F_p (that is, $\{V : \text{the Fréchet derivative } D_V F_p = 0\}$). We show in Theorem 3.1 that if a critical point (hence, in particular, a global minimizer) V of F_p satisfies $V^*V = VV^*$ for self-adjoint B, then $VV^* = VV^*$. In Theorem 3.2 we classify the critical points of F_p. Theorem 3.2 says that for self-adjoint B such that $BX = XB$, the point V is a critical point of F_p if and only if $V^*V = VV^* = 0$.

It follows from Theorem 3.2 that every global minimizer X of F_p satisfies $X^*X -XX^* = 0$ for self-adjoint B commuting with X. The global result guarantees the existence of global minima. Thus, it says that under the same hypotheses $(BX = XB, B^* = B \in C_p)$ for all X such that $X^*X -XX^* \in C_p$, where $1 < p < \infty$,
\[
\|B - (X^*X - XX^*)\|_p \geq \|B\|_p
\]
with equality in (1.6) if and only if $X^*X - XX^* = 0$.

There is a similar inequality for the trace norm ($p = 1$) proved by different arguments in Theorem 4.2. Examples 4.1, 4.2 and 4.4 illustrate, and reinforce, the results. Examples 4.1 and 4.2 show that if the (seemingly restrictive) condition $BX = XB$ is dropped, the conclusions of Theorems 4.1 and 4.2 do not hold. Finally, Example 4.3 shows that for $0 < p < 1$ the inequalities may be reversed.

2. Preliminaries

Let H denote a separable, complex Hilbert space. For details concerning the von Neumann-Schatten classes C_p and norms $\|\cdot\|_p$ see [7, Chapter XI], [18, Chapter 2]. The spaces C_p are examples of 2-sided, self-adjoint ideals. Note $C_p \subseteq C_q$ and $\|\cdot\|_p \geq \|\cdot\|_q$ if $1 \leq p \leq q < \infty$. The Fréchet derivative of some real-valued function
F at V is denoted by $D_V F$ and given by
\begin{equation}
(D_V F)(S) = \lim_{h \to 0} \frac{F(V + hS) - F(V)}{h}
\end{equation}
(provided the R.H. limit exists). We state below the Aiken, Erdos and Goldstein differentiation result.

Theorem 2.1 ([1, Theorem 2.1]). Let the map $\Phi: C_p \to \mathbb{R}^+$ be given by $\Phi: X \to \|X\|^p$. Then:

(a) for $1 < p < \infty$, the map Φ is Fréchet differentiable at every X in C_p with derivative $D_X \Phi$ given by
\[(D_X \Phi)(S) = p \tau \|X\|^{p-1} U^* S, \]
where τ denotes trace, $X = U|X|$ is the polar decomposition of X and $S \in C_p$;

(b) for $0 < p \leq 1$, provided dim $H < \infty$, the same result holds at every invertible element X.

Observe that the formula for the R.H.S. of $(D_X \Phi)(S)$ makes sense: for $|X|^{p-1} U^* \in C_1$ since, by [18, Lemma 2.3.1], $X \in C_p \iff |X| \in C_p \iff |X|^p \in C_1$, that is, $|X|^p = (|X|^{p-1} U^*)(U|X|) \in C_1$, whence $|X|^{p-1} U^* \in C_1$ as $X = U|X| \in C_p \supseteq C_1$.

3. LOCAL THEORY

The local theory of self-commutator approximation is more complicated than the local theory of commutator approximation [15, Theorem 3.2 (b)]; inevitably so, since differentiating a (non-commutative) product is more complicated than differentiating a sum. The local theory centres on Theorem 3.1.

Theorem 3.1. Let B be self-adjoint in C_p, where $1 < p < \infty$. Let $\mathcal{S} = \{X : X^* X - XX^* \in C_p\}$ and let $F_p: \mathcal{S} \to \mathbb{R}^+$ be given by
\[F_p: X \to \|B - (X^* X - XX^*)\|^p. \]
Then if V is a critical point of F_p such that $V^* V - VV^* = 0$ it follows that $BV = VB$.

Proof. As we shall use this proof in that of Theorem 3.2 we adopt the hypothesis that $V^* V - VV^* = 0$ only at the last step.

Step 1. Let V be in \mathcal{S} so that $B - (V^* V - VV^*) \in C_p$. (Observe that the set $\mathcal{S} = \{X : X^* X - XX^* \in C_p\}$ properly contains C_p, for if $X \in C_p$ then $X \in \mathcal{S}$ and, e.g., $I \in \mathcal{S}$ but $I \notin C_p$.) Let S consist of all operators S for which $B - [(V + S)^* (V + S) - (V + S)(V + S)^*] \in C_p$. (Thus, S also properly contains C_p.) Let $\Phi: X \to \|X\|^p$ and $\Psi: X \to B - (X^* X - XX^*)$. Then $F_p = \Phi \circ \Psi$. Let S be arbitrary in \mathcal{S}. By considering $F_p(V + S) - F_p(V)$ it follows from the definition 2.1 of the derivative that the Fréchet derivative of F_p at V is given by
\[(D_V F_p)(S) = (D_B - (V^* V - VV^*) \Phi)(VS^* + SV^* - V^* S - S^* V). \]

Let $B - (V^* V - VV^*) = U_1 |B - (V^* V - VV^*)|$ be the polar decomposition of $B - (V^* V - VV^*)$ (so that $\text{Ker} U_1 = \text{Ker} |B - (V^* V - VV^*)|$). Then by Theorem 2.1 on writing
\[Y = U_1 |B - (V^* V - VV^*)|^{p-1}, \]
we have
\[(D_V F_p)(S) = p \Re \tau[Y^* (VS^* + SV^* - V^* S - S^* V)]\]
for all operators \(S\) in \(S\). Note that \(Y^* = |B - (V^* V - V V^*)|^{p-1} U_1^* \in C_1\) (cf. comments after the statement of Theorem 2.1). Therefore, as \(\Re \tau(T) = \Re \tau(T^*)\) for all \(T\) in \(C_1\), we have \(\Re \tau[Y^* VS^* - Y^* S^* V] = \Re \tau[SV^* Y - V^* SY]\). Hence, by the invariance of trace [18, Theorem 2.2.4],
\[
(D_V)(F_p)(S) = p \Re \tau[(V^* Y - Y V^* + V^* Y^* - Y^* V^*') S].
\]

Step 2. Let \(V\) be a critical point of \(F_p\), so that \((D_V F_p)(S) = 0\) for all operators \(S\) in \(S\). Take \(S = f \otimes g\), where \(f\) and \(g\) are arbitrary vectors in the underlying Hilbert space \(H\). (The rank one operator \(x \rightarrow \langle x, f \rangle g\), where \(x \in H\), is denoted \(f \otimes g\). Note that \(\tau[T(f \otimes g)] = \langle Tg, f \rangle\) for \(T\) in \(L(H)\); cf. [18, pp. 73, 90].) Then by (3.1)
\[
\Re \langle (V^* Y - Y V^* + V^* Y^* - Y^* V^*) g, f \rangle = 0
\]
which, since \(f\) and \(g\) are arbitrary, means that \(V^* Y - Y V^* + V^* Y^* - Y^* V^* = 0\), that is,
\[
(\Re Y)V = V(\Re Y).
\]

Step 3. Suppose now that \(B\) is self-adjoint. Then \(B - (V^* V - V V^*) = U_1^* |B - (V^* V - V V^*)|\) is self-adjoint. Hence \(U_1\) is self-adjoint and commutes with \(|B - (V^* V - V V^*)|\), and hence \(Y = U_1 |B - (V^* V - V V^*)|^{p-1}\) is self-adjoint. Therefore, (3.2) says that
\[
Y V = V Y,
\]
that is,
\[
U_1 |B - (V^* V - V V^*)|^{p-1} V = V U_1 |B - (V^* V - V V^*)|^{p-1}.
\]

Step 4. Assertion: \(V\) satisfies
\[
BV - (V^* V - V V^*)V = VB - V(V^* V - V V^*).
\]
To prove this assertion, note that equality (3.5) is equivalent to
\[
U_1 |B - (V^* V - V V^*)| V = V U_1 |B - (V^* V - V V^*)|.
\]
Write \(Z = |B - (V^* V - V V^*)|^{p-1}\). Then (3.6) says that
\[
U_1 Z_{1/p} V = V U_1 Z_{1/p}.
\]
To prove (3.7) we approximate both sides of (3.7) by polynomials in \(Z\). The function \(f: t \rightarrow t^{1/(p-1)}\), where \(t \in \sigma(Z) \subseteq \mathbb{R^+}\), can be approximated uniformly by a sequence \((p_i)\) of polynomials without constant term (for \(f(0) = 0\)). Therefore, (3.7) will follow by the functional calculus (cf. [16, p. 998]) from \(U_1 p_i(Z) V = V U_1 p_i(Z)\) and this, in turn, will follow from
\[
U_1 Z^n V = V U_1 Z^n.
\]
To prove (3.8) note that in the polar decomposition of \(B - (V^* V - V V^*)\), \(\text{Ker} U_1 = \text{Ker} |B - (V^* V - V V^*)| = \text{Ker} Z\) (by the spectral theorem). Hence, \((\text{Ker} U_1)^\perp = \text{Ran} Z\) and \(U_1^* U_1\), the orthogonal projection onto \((\text{Ker} U_1)^\perp\), satisfies \(Z U_1^* U_1 Z = Z^2\). (It is simplest to write, where necessary, \(U_1^*\), even though \(U_1\) is self-adjoint.) Since \(Y = U_1 Z\), then (3.3) says that \(U_1 Z V = V U_1 Z\) and, as \(Y = Y^*\), \(Z U_1^* V = V Z U_1 Z\). Thus,
\[
Z^2 V = Z U_1^* (U_1 Z V) = (Z U_1^* V) U_1 Z = V Z U_1^* U_1 Z = V Z^2.
\]
Taking positive square roots of Z^2 (Theorem 1.7.7 (vi)) we get $VZ = ZV$.
Returning now to (3.2): for $n = 1$, (3.3) is the equality $U_1ZV = VU_1Z$ (which is (3.4)), and the inductive step follows from $ZV = VZ$. This proves the assertion.

Step 5. If, finally, $V^*V - VV^* = 0$ then (3.5) forces $BV = VB$. \hfill \square

Note. The proof in Theorem 3.1 of the implication, V is a critical point of $F_p \Rightarrow BV - (V^*V - VV^*)V = VB - V(V^*V - VV^*)$, only holds for $1 < p < \infty$ since the argument involving the function $f : t \rightarrow t^{1/(p-1)}$, where $0 \leq t < \infty$, only holds for $1 < p < \infty$.

Observe also that for non-self-adjoint B, in the case $p = 2$, it follows from equality (3.2) of the proof of Theorem 3.1 that if V is a critical point of F_2 such that $V^*V - VV^* = 0$, then $(\Re B)V = V(\Re B)$. But this latter equality does not force $BV = VB$ even if B is normal; witness: $B = \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right]$.

Theorem 3.2. Let B be self-adjoint, let $BX = XB$ and let B be in C_p. Let
$$\mathcal{S} = \{X : X^*X - XX^* \in C_p\}$$
and let $F_p : \mathcal{S} \rightarrow \mathbb{R}^+$ be given by
$$F_p : X \mapsto \|B - (X^*X - XX^*)\|^p_p.$$ Then:

(a) for $1 < p < \infty$, the map F_p has a critical point at V if and only if $V^*V - VV^* = 0$;

(b) for $0 < p \leq 1$, the map F_p has a critical point at V if $V^*V - VV^* = 0$ provided $\dim H < \infty$ and $B - (V^*V - VV^*)$ is invertible;

(c) for $p = 2$, the same result as in (a) holds if the condition on B of self-adjointness is replaced by normality.

Proof. (a) Let V be a critical point of F_p. Then equality (3.5) of the proof of Theorem 3.1 holds. As $BV = VB$ then $(V^*V - VV^*)V = V(V^*V - VV^*)$, whence, by Kleinecke-Shirokov [11, Problem 232], $V^*V - VV^*$ is quasinilpotent and, hence, being self-adjoint, zero.

Conversely, let V satisfy $V^*V - VV^* = 0$. Then the partial isometries U_1 and, say, U, occurring in the polar decompositions of $B - (V^*V - VV^*)$ and of B, coincide. Thus, $Y = U|B|^{p-1} \in C_1$ so that $Y^* = |B|^{p-1}U^* \in C_1$.

We first prove that $Y^*V - VY^* = 0$. Since V and V^* commute with B they commute with $|B|$ (and hence with $|B|^{p-1}$). So, $|B|U^*V = |B|VU^*$. It follows that
$$\text{Ran}(U^*V - VU^*) \subseteq \text{Ker}|B| = \text{Ker}|B|^{p-1}.$$ Hence, since $|B|^{p-1}V = V|B|^{p-1}$, therefore $Y^*V - VY^* = 0$.

Similarly, from the equality $|B|U^*V = |B|V^*U^*$ it follows that $Y^*V - VY^* = 0$. Hence, $V^*Y - YV^* + V^*Y^* - Y^*V^* = 0$. Substitute into equality (3.3) of the proof of Theorem 3.1 (the expression for D_VF_p, the Fréchet derivative of F_p at V). As $YS \in C_1$ and $Y^*S \in C_1$, it follows by (3.3) that $(D_VF_p)(S) = 0$ for all S in $L(H)$.

(b) follows immediately from (a) as in [15, Theorem 3.2 (c)].

(c) Let B be normal. If V is a critical point of F_2, then equality (3.2) of the proof of Theorem 3.1 says that
$$[\Re B - (V^*V - VV^*)]V = V[\Re B - (V^*V - VV^*)].$$
Since V commutes with B then (by Fuglede) V commutes with B^* and hence with $\Re B$. The result now follows as in (a).
The proof of the converse implication (\(V\) satisfies \(V^*V - VV^* = 0 \Rightarrow V\) is a critical point of \(F_p\)) depends only on \(V\) and \(V^*\) commuting with \(B\) and is therefore the same as in (a).

Indeed, the proof in (a) of the implication, \(V^*V - VV^* = 0 \Rightarrow V\) is a critical point of \(F_p\), for \(1 < p < \infty\), holds (via Fuglede’s Theorem) for normal \(B\).

4. Global theory

Theorem 4.1. Let \(B\) be self-adjoint, let \(BX = XB\) and let \(B\) be in \(C_p\). Let \(\mathcal{S} = \{X : X^*X - XX^* \in C_p\}\). Then, if \(X \in \mathcal{S}\),

(a) for \(1 < p < \infty\),

\[
\|B - (X^*X - XX^*)\|_p \geq \|B\|_p
\]

with equality holding in (4.1) if and only if \(X^*X - XX^* = 0\);

(b) for \(p = 2\), the same result as in (a) holds if \(B\) is assumed normal rather than self-adjoint.

Proof: (a) First, suppose the operators \(X\) in \(\mathcal{S}\) are contractions, i.e., such that \(\|X\| \leq 1\). Suppose also that the underlying space \(H\) is finite dimensional. (The argument here is analogous to [14 Theorem 5.7].) The set of contractions is bounded and closed (for the condition \(X^*X - I \leq 0\) characterises the contractions, and the map \(X \rightarrow X^*X\) is continuous; cf. [11 Problem 129]). Hence, \(\mathcal{S}\) is compact since \(H\) is finite dimensional. Therefore, the continuous map \(F_p : X \rightarrow \|B - (X^*X - XX^*)\|_p^p\) is bounded, attains its bounds and thus has a global minimizer, and hence a critical point, at \(V\), say. Since, by Theorem 3.2(a), \(V^*V - VV^* = 0\), therefore

\[
\|B - (X^*X - XX^*)\|_p \geq \|B\|_p.
\]

Conversely, if equality holds in (4.2) for some point \(X\), then that \(X\) is a global minimizer, hence a critical point of \(F_p\), whence, by Theorem 3.2(a), \(X^*X - XX^* = 0\).

The extension to infinite-dimensional \(H\) is similar to [11 Theorem 3.5]. As the operator \(B\) is compact and normal there exists a basis \(\{\phi_i\}\) of \(H\) consisting of eigenvectors of \(B\) which may be ordered such that \(|\lambda_1| \geq |\lambda_2| \geq \ldots\) where \(B\phi_i = \lambda_i \phi_i\) (and where the eigenvalues are repeated according to multiplicity). Let

\[
H_k = \text{Span}\{\phi_i : B\phi_i = \lambda_i \phi_i, i = 1, \ldots, k\}.
\]

\(H_k\) is invariant under \(X\) and \(X^*\); for if \(\phi_i\) is an eigenvector of \(B\), then so are \(X\phi_i\) and \(X^*\phi_i\) with the same eigenvalues (since \(B\) commutes with \(X\) and \(X^*\)). Therefore, if \(E_k\) denotes the orthogonal projection onto \(H_k\), then \(E_kX =XE_k\). Hence \(E_kBE_k\) commutes with \(E_kXE_k\) (and with \(E_kX^*E_k\)) and hence, by the finite-dimensional inequality (4.2) applied to the contraction \(E_kXE_k\),

\[
\|(E_kBE_k) - [(E_kXE_k)^*(E_kXE_k)] - (E_kXE_k)(E_kXE_k)^*\|_p \geq \|E_kBE_k\|_p,
\]

that is, \(\|E_k[B - (X^*X - XX^*)]E_k\|_p \geq \|E_kBE_k\|_p\). Now let \(k \rightarrow \infty\). Then \(E_k \rightarrow I\) and from [8 Lemma 2] (cf. [11 Theorem 3.5]), it follows that inequality (4.2) holds for infinite-dimensional \(H\).

The condition that the operator \(X\) in \(\mathcal{S}\) is a contraction may now be lifted. Let \(X\) be arbitrary in \(\mathcal{S}\); then by applying the inequality (4.2) to the contraction \(X/\|X\|\), the result immediately follows.
Theorem 4.2. Let \(B \) be normal, let \(BX = XB \) and let \(B \) be in \(\mathcal{C}_1 \). Then, if \(X^*X - XX^* \in \mathcal{C}_1 \),
\[
\| B - (X^*X - XX^*) \|_1 \geq \| B \|_1.
\]

Proof. Let \(B = U|B| \) be the polar decomposition of \(B \). As \(U \) is a partial isometry, so is \(U^* \), and so \(\| U^* \| = 1 \). Since, by \cite[Theorem 2.3.10]{13}, \(\| U^*T \|_1 \leq \| U^* \| \| T \|_1 = \| T \|_1 \) for arbitrary \(T \) in \(\mathcal{C}_1 \). Then, by \cite[Lemma 2.3.3]{13},
\[
\| B - (X^*X - XX^*) \|_1 \geq \| B - U^*(X^*X - XX^*) \|_1
\]
(4.3)
\[
\geq \tau([B] - U^*(X^*X - XX^*))
\]
where
\[
\tau([B] - U^*(X^*X - XX^*)) = \sum_n \langle [B] - U^*(X^*X - XX^*) | \phi_n, \phi_n \rangle
\]
for an arbitrary orthonormal basis \(\{ \phi_i \} \) of \(H \).

Take \(\{ \phi_i \} \) as the orthonormal basis of \(H \) consisting of eigenvectors of the compact normal operator \(|B| \). Let \(\{ \psi_m \} \) be an orthonormal basis of \(\text{Ker} |B| \) and let \(\{ \xi_k \} \) be an orthonormal basis of \((\text{Ker} |B|)^\perp \) consisting of eigenvectors of \(|B| \). Thus, \(\{ \phi_n \} = \{ \psi_m \} \cup \{ \xi_k \} \). Then \(\sum_m \langle [B] - U^*(X^*X - XX^*) | \psi_m, \psi_m \rangle = 0 \) because \(\psi_m \in \text{Ker} |B| = \text{Ker} U \); and \(\sum_k \langle [B] \xi_k, \xi_k \rangle = \| B \|_1 \). Further, since \(BX = XB \) and \(BX^* = X^*B \), it can be checked that \(\langle U^*X^*X \xi_k, \xi_k \rangle = \langle X^*U^*X \xi_k, \xi_k \rangle \). Hence, by the invariance of trace \cite[Theorem 2.2.4 (v)]{13}, \(\tau(U^*(X^*X - XX^*)) = 0 \). Therefore, by (4.3),
\[
\| B - (X^*X - XX^*) \|_1 \geq \tau([B]) = \| B \|_1.
\]
\(\square \)

In the special case when \(B \) is positive, the proof of the trace norm result is simple and does not require the commutativity condition.

Theorem 4.3. Let \(B \) be positive and be in \(\mathcal{C}_1 \). Then, if \(X^*X - XX^* \in \mathcal{C}_1 \),
\[
\| B - (X^*X - XX^*) \|_1 \geq \| B \|_1.
\]

Proof. Let \(B \) be positive so that \(B = |B| \). Then, by \cite[Lemma 2.3.3]{13} and the linearity of trace \cite[Theorem 2.2.4]{13},
\[
\| B - (X^*X - XX^*) \|_1 \geq \tau(B - (X^*X - XX^*)) = \tau([B]) = \| B \|_1.
\]
\(\square \)

If \(B \) and \(X \) do not commute, then either \(\| B - (X^*X - XX^*) \|_p \geq \| B \|_p \) for \(1 \leq p < \infty \), is reversed \(\text{(Example 4.1)} \) or \(\| B - (X^*X - XX^*) \|_p = \| B \|_p \) without \(X^*X - XX^* = 0 \) \(\text{(Example 4.2)} \).

Example 4.1. Take \(B = \begin{bmatrix} \frac{3}{2} & 0 \\ 0 & \frac{3}{2} \end{bmatrix} \) and \(X = \begin{bmatrix} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{bmatrix} \) so that \(B = B^* \) and \(BX \neq XB \).

For \(1 \leq p < \infty \), as \(\| T \|_p = \sum_i s_i(T)^p \), where \(s_i(T) \) denotes the \(i \)th eigenvalue of \(T \), we get, for \(1 \leq p < \infty \),
\[
\| B - (X^*X - XX^*) \|_p^p = 1^p + 1^p < 3^p + 3^p = \| B \|_p^p.
\]
Example 4.2. Take $X = f \otimes g$ and $B = f \otimes f$, where $f \neq g$ and $\|f\| = \|g\| = 1$, so that $B = B^* (\geq 0)$ and $BX \neq XB$. Then $X^*X - XX^* = f \otimes f - g \otimes g \neq 0$ and, as $\|f \otimes g\|_p = \|f\| \|g\|_p$ for $1 \leq p < \infty$ \cite[p. 90]{kittaneh2000}, we have

$$
\|B - (X^*X - XX^*)\|_p = \|g \otimes g\|_p (\geq 1) = \|f \otimes f\| = \|B\|_p.
$$

Finally, the inequality $\|B - (X^*X - XX^*)\|_p \geq \|B\|_p$ may be reversed for $0 < p < 1$.

Example 4.3. Take $B = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} (\geq 0)$ and $X = \begin{bmatrix} 3 & \sqrt{\pi} \\ 1 & 3 \end{bmatrix}$ so that $B = B^*$ and $BX = XB$. Then for $0 < p < 1$ we have the strict inequality

$$
\|B - (X^*X - XX^*)\|_p^p = 6^p < 2 \cdot 3^p = \|B\|_p^p.
$$

(This example also shows that even if the conditions of Theorem \ref{thm:4.2} are met, a minimizer of $\|B - (X^*X - XX^*)\|_1$ need not be normal: for here

$$
\|B - (X^*X - XX^*)\|_1 (\geq 6) = \|B\|_1,
$$

yet $X^*X - XX^* \neq 0$.)

References

\begin{thebibliography}{99}
\end{thebibliography}

Department of Mathematics, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
E-mail address: p.maher@mdx.ac.uk