PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 1, Pages 157-165 S 0002-9939(05)07871-8 Article electronically published on August 15, 2005

SELF-COMMUTATOR APPROXIMANTS

P. J. MAHER

(Communicated by Joseph A. Ball)

ABSTRACT. This paper deals with minimizing $||B - (X^*X - XX^*)||_p$, where B is fixed, self-adjoint and $B \in C_p$, and where X varies such that BX = XB and $X^*X - XX^* \in C_p$, $1 \le p < \infty$. (Here, C_p , $1 \le p < \infty$, denotes the von Neumann-Schatten class and $|| \cdot ||_p$ its norm.) The upshot of this paper is that $||B - (X^*X - XX^*)||_p$, $1 \le p < \infty$, is minimized if, and for $1 only if, <math>X^*X - XX^* = 0$, and that the map $X \to ||B - (X^*X - XX^*)||_p^p$, 1 , has a critical point at <math>X = V if and only if $V^*V - VV^* = 0$ (with related results for normal B if p = 1 or 2).

1. INTRODUCTION

This paper is concerned with approximating an operator by a self-commutator $X^*X - XX^*$ of operators. We study minimizing the quantity

$$||B - (X^*X - XX^*)||_p, \quad 1 \le p < \infty,$$

for fixed B in C_p and varying X such that $X^*X - XX^* \in C_p$. (Here C_p denotes the von Neumann-Schatten class with norm $\|\cdot\|_p$, where $1 \le p < \infty$.)

The related topic of approximation by commutators AX - XA, which has attracted much interest, has its roots in quantum theory. The Heisenberg Uncertainty Principle may be mathematically formulated as saying that there exists a pair A, Xof linear transformations and a (non-zero) scalar α for which

$$AX - XA = \alpha I.$$

Clearly, (1.1) cannot hold for square matrices A and X. (To see this, just take the trace of both sides of (1.1).) Nor can (1.1) hold for bounded linear operators A and X: two beautiful proofs of this are due to Wielandt [19] and Wintner [20]. This prompts the question: how close can AX - XA be to the identity?

Halmos [9], [11, Problem 233] proved that if A is normal, or if A commutes with AX - XA, then, for all X in $\mathcal{L}(H)$,

(1.2)
$$||I - (AX - XA)|| \ge ||I||.$$

Anderson [2, Theorem 1.7] generalized Halmos' inequality (1.2): he proved that if A is normal and commutes with B, then, for all X in $\mathcal{L}(H)$,

(1.3)
$$||B - (AX - XA)|| \ge ||B||.$$

©2005 American Mathematical Society

Received by the editors March 5, 2003 and, in revised form, March 25, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B20, 47A30; Secondary 47B10.

Key words and phrases. Self-commutator, von Neumann-Schatten class.

Maher [15, Theorem 3.2] obtained the C_p variant of Anderson's result: he proved that if the normal operator A commutes with B and if $B \in C_p$, then, for all X such that $AX - XA \in C_p$,

(1.4)
$$||B - (AX - XA)||_p \ge ||B||_p, \quad 1 \le p < \infty,$$

with equality in (1.4) if, and for 1 only if, <math>AX - XA = 0.

Using the technique of [15], Bouli and Cherki [4] and Mercheri [16] studied approximation by "generalized commutators" AX - XC. They proved [4, Theorem 2.2], [16, Theorem 3.7] that if $B \in \mathcal{C}_p$, if AB = BC and if the pair (A, C) has the Putnam-Fuglede \mathcal{C}_p property (meaning that $AX = XC \Rightarrow A^*X = XC^*$ if $X \in \mathcal{C}_p$), then, for all X such that $AX - XC \in \mathcal{C}_p$,

(1.5)
$$||B - (AX - XC)||_p \ge ||B||_p, \quad 1 \le p < \infty,$$

with equality if, and for 1 only if, <math>AX - XC = 0. (Other related work includes that of Berens and Finzel [3], Duggal [5], [6], Kittaneh [12], [13] and Mercheri [17].)

In the above results (1.2), (1.3) and (1.4), the zero commutator is, to use Halmos' terminology [10], a commutator approximant in C_p of B (and similarly, cf. (1.5) for generalised commutators). Here, we frame hypotheses so that the zero self-commutator, likewise, minimizes the quantity $||B - (X^*X - XX^*)||_p$. Since a global minimizer is a critical point, we study the local behaviour of the map

$$F_p\colon X\to \|B-(X^*X-XX^*)\|_p^p.$$

We consider the critical points of F_p (that is, $\{V : \text{the Fréchet derivative } D_V F_p = 0\}$). We show in Theorem 3.1 that if a critical point (hence, in particular, a global minimizer) V of F_p satisfies $V^*V - VV^* = 0$ for self-adjoint B, then BV = VB. In Theorem 3.2 we classify the critical points of F_p . Theorem 3.2 says that for self-adjoint B such that BX = XB, the point V is a critical point of F_p if and only if $V^*V - VV^* = 0$.

It follows from Theorem 3.2 that **every** global minimizer X of F_p satisfies $X^*X - XX^* = 0$ for self-adjoint B commuting with X. The global result guarantees the **existence** of global minima. Thus, it says that under the same hypotheses $(BX = XB, B^* = B \in \mathcal{C}_p)$ for all X such that $X^*X - XX^* \in \mathcal{C}_p$, where 1 ,

(1.6)
$$||B - (X^*X - XX^*)||_p \ge ||B||_p$$

with equality in (1.6) if and only if $X^*X - XX^* = 0$.

There is a similar inequality for the trace norm (p = 1) proved by different arguments in Theorem 4.2. Examples 4.1, 4.2 and 4.3 illustrate, and reinforce, the results. Examples 4.1 and 4.2 show that if the (seemingly restrictive) condition BX = XB is dropped, the conclusions of Theorems 4.1 and 4.2 do not hold. Finally, Example 4.3 shows that for 0 the inequalities may be reversed.

2. Preliminaries

Let H denote a separable, complex Hilbert space. For details concerning the von Neumann-Schatten classes C_p and norms $\|\cdot\|_p$ see [7, Chapter XI], [18, Chapter 2]. The spaces C_p are examples of 2-sided, self-adjoint ideals. Note $C_p \subseteq C_q$ and $\|\cdot\|_p \geq \|\cdot\|_q$ if $1 \leq p \leq q < \infty$. The Fréchet derivative of some real-valued function

F at V is denoted by $D_V F$ and given by

(2.1)
$$(D_V F)(S) = \lim_{h \to 0} \frac{F(V + hS) - F(V)}{h}$$

(provided the R.H. limit exists). We state below the Aiken, Erdos and Goldstein differentiation result.

Theorem 2.1 ([1, Theorem 2.1]). Let the map $\Phi: \mathcal{C}_p \to \mathbb{R}^+$ be given by $\Phi: X \to \|X\|_p^p$. Then:

(a) for $1 , the map <math>\Phi$ is Fréchet differentiable at every X in C_p with derivative $D_X \Phi$ given by

$$(D_X \Phi)(S) = p \,\Re \,\tau[|X|^{p-1} U^* S],$$

where τ denotes trace, X = U|X| is the polar decomposition of X and $S \in \mathcal{C}_p$;

(b) for $0 , provided dim <math>H < \infty$, the same result holds at every invertible element X.

Observe that the formula for the R.H.S. of $(D_X \Phi)(S)$ makes sense: for $|X|^{p-1}U^* \in \mathcal{C}_1$ since, by [18, Lemma 2.3.1], $X \in \mathcal{C}_p \Leftrightarrow |X| \in \mathcal{C}_p \Leftrightarrow |X|^p \in \mathcal{C}_1$, that is, $|X|^p = (|X|^{p-1}U^*)(U|X|) \in \mathcal{C}_1$, whence $|X|^{p-1}U^* \in \mathcal{C}_1$ as $X = U|X| \in \mathcal{C}_p \supseteq \mathcal{C}_1$.

3. Local theory

The local theory of self-commutator approximation is more complicated than the local theory of commutator approximation [15, Theorem 3.2 (b)]: inevitably so, since differentiating a (non-commutative) product is more complicated than differentiating a sum. The local theory centres on Theorem 3.1.

Theorem 3.1. Let B be self-adjoint in C_p , where $1 . Let <math>\mathfrak{S} = \{X : X^*X - XX^* \in C_p\}$ and let $F_p \colon \mathfrak{S} \to \mathbb{R}^+$ be given by

 $F_p \colon X \to \|B - (X^*X - XX^*)\|_p^p.$

Then if V is a critical point of F_p such that $V^*V - VV^* = 0$ it follows that BV = VB.

Proof. As we shall use this proof in that of Theorem 3.2 we adopt the hypothesis that $V^*V - VV^* = 0$ only at the last step.

Step 1. Let V be in \mathfrak{S} so that $B - (V^*V - VV^*) \in \mathcal{C}_p$. (Observe that the set $\mathfrak{S} = \{X : X^*X - XX^* \in \mathcal{C}_p\}$ properly contains \mathcal{C}_p , for if $X \in \mathcal{C}_p$ then $X \in \mathfrak{S}$ and, e.g., $I \in \mathfrak{S}$ but $I \notin \mathcal{C}_p$.) Let \mathcal{S} consist of all operators S for which $B - [(V + S)^*(V + S) - (V + S)(V + S)^*] \in \mathcal{C}_p$. (Thus, \mathcal{S} also properly contains \mathcal{C}_p .) Let $\Phi : X \to ||X||_p^p$ and $\Psi : X \to B - (X^*X - XX^*)$. Then $F_p = \Phi \circ \Psi$. Let S be arbitrary in \mathcal{S} . By considering $F_p(V + S) - F_p(V)$ it follows from the definition (2.1) of the derivative that the Fréchet derivative of F_p at V is given by

$$(D_V F_p)(S) = (D_{B-(V^*V-VV^*)}\Phi)(VS^* + SV^* - V^*S - S^*V).$$

Let $B - (V^*V - VV^*) = U_1|B - (V^*V - VV^*)|$ be the polar decomposition of $B - (V^*V - VV^*)$ (so that Ker $U_1 = \text{Ker} |B - (V^*V - VV^*)|$). Then by Theorem 2.1, on writing

$$Y = U_1 |B - (V^*V - VV^*)|^{p-1},$$

we have

$$(D_V F_p)(S) = p \Re \tau [Y^* (VS^* + SV^* - V^*S - S^*V)]$$

for all operators S in S. Note that $Y^* (= |B - (V^*V - VV^*)|^{p-1}U_1^*) \in \mathcal{C}_1$ (cf. comments after the statement of Theorem 2.1). Therefore, as $\Re \tau(T) = \Re \tau(T^*)$ for all T in \mathcal{C}_1 , we have $\Re \tau[Y^*VS^* - Y^*S^*V] = \Re \tau[SV^*Y - V^*SY]$. Hence, by the invariance of trace [18, Theorem 2.2.4],

(3.1)
$$(D_V)(F_p)(S) = p \Re \tau [(V^*Y - YV^* + V^*Y^* - Y^*V^*)S].$$

Step 2. Let V be a critical point of F_p so that $(D_V F_p)(S) = 0$ for all operators S in S. Take $S = f \otimes g$, where f and g are arbitrary vectors in the underlying Hilbert space H. (The rank one operator $x \to \langle x, f \rangle g$, where $x \in H$, is denoted $f \otimes g$. Note that $\tau[T(f \otimes g)] = \langle Tg, f \rangle$ for T in $\mathcal{L}(H)$; cf. [18, pp. 73, 90].) Then by (3.1)

$$\Re \langle (V^*Y - YV^* + V^*Y^* - Y^*V^*)g, f \rangle = 0$$

which, since f and g are arbitrary, means that $V^*Y - YV^* + V^*Y^* - Y^*V^* = 0$, that is,

$$(\mathfrak{R}Y)V = V(\mathfrak{R}Y).$$

Step 3. Suppose now that *B* is self-adjoint. Then $B - (V^*V - VV^*)$ (= $U_1|B - (V^*V - VV^*)|$) is self-adjoint. Hence U_1 is self-adjoint and commutes with $|B - (V^*V - VV^*)|$, and hence $Y (= U_1|B - (V^*V - VV^*)|^{p-1})$ is self-adjoint. Therefore, (3.2) says that

$$(3.3) YV = VY,$$

that is,

$$(3.4) U_1|B - (V^*V - VV^*)|^{p-1}V = VU_1|B - (V^*V - VV^*)|^{p-1}.$$

Step 4. Assertion: V satisfies

(3.5)
$$BV - (V^*V - VV^*)V = VB - V(V^*V - VV^*).$$

To prove this assertion, note that equality (3.5) is equivalent to

(3.6)
$$U_1|B - (V^*V - VV^*)|V = VU_1|B - (V^*V - VV^*)|.$$

Write $Z = |B - (V^*V - VV^*)|^{p-1}$. Then (3.6) says that

(3.7)
$$U_1 Z^{\frac{1}{p-1}} V = V U_1 Z^{\frac{1}{p-1}}$$

To prove (3.7) we approximate both sides of (3.7) by polynomials in Z. The function $f: t \to t^{1/(p-1)}$, where $t \in \sigma(Z) \subseteq \mathbb{R}^+$, can be approximated uniformly by a sequence (p_i) of polynomials without constant term (for f(0) = 0). Therefore, (3.7) will follow by the functional calculus (cf. [15, p. 998]) from $U_1p_i(Z)V = VU_1p_i(Z)$ and this, in turn, will follow from

$$(3.8) U_1 Z^n V = V U_1 Z^n$$

To prove (3.8) note that in the polar decomposition of $B - (V^*V - VV^*)$, Ker $U_1 = \text{Ker} |B - (V^*V - VV^*)| = \text{Ker } Z$ (by the spectral theorem). Hence, $(\text{Ker } U_1)^{\perp} = \text{Ran } Z$ and $U_1^*U_1$, the orthogonal projection onto $(\text{Ker } U_1)^{\perp}$, satisfies $ZU_1^*U_1Z = Z^2$. (It is simplest to write, where necessary, U_1^* , even though U_1 is self-adjoint.) Since $Y = U_1Z$, then (3.3) says that $U_1ZV = VU_1Z$ and, as $Y = Y^*$, $ZU_1^*V = VZU_1^*$. Thus,

$$Z^{2}V = ZU_{1}^{*}(U_{1}ZV) = (ZU_{1}^{*}V)U_{1}Z = VZU_{1}^{*}U_{1}Z = VZ^{2}.$$

160

Taking positive square roots of Z^2 [18, Theorem 1.7.7 (vi)] we get VZ = ZV. Returning now to (3.8): for n = 1, (3.8) is the equality $U_1 Z V = V U_1 Z$ (which is (3.3)), and the inductive step follows from ZV = VZ. This proves the assertion. \square

Step 5. If, finally, $V^*V - VV^* = 0$ then (3.5) forces BV = VB.

Note. The proof in Theorem 3.1 of the implication, V is a critical point of F_p $\Rightarrow BV - (V^*V - VV^*)V = VB - V(V^*V - VV^*), \text{ only holds for } 1$ the argument involving the function $f: t \to t^{1/(p-1)}$, where $0 \le t < \infty$, only holds for 1 .

Observe also that for non-self-adjoint B, in the case p = 2, it follows from equality (3.2) of the proof of Theorem 3.1 that if V is a critical point of F_2 such that $V^*V - VV^* = 0$, then $(\Re B)V = V(\Re B)$. But this latter equality does not force BV = VB even if B is normal: witness: $B = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$.

Theorem 3.2. Let B be self-adjoint, let BX = XB and let B be in C_p . Let $\mathfrak{S} = \{X : X^*X - XX^* \in \mathcal{C}_p\}$ and let $F_p \colon \mathfrak{S} \to \mathbb{R}^+$ be given by

$$F_p\colon X\to \|B-(X^*X-XX^*)\|_p^p.$$

Then:

- (a) for $1 , the map <math>F_p$ has a critical point at V if and only if $V^*V VV^{*} = 0;$
- (b) for $0 , the map <math>F_p$ has a critical point at V if $V^*V VV^* = 0$ provided dim $H < \infty$ and $B - (V^*V - VV^*)$ is invertible;
- (c) for p = 2, the same result as in (a) holds if the condition on B of selfadjointness is replaced by normality.

Proof. (a) Let V be a critical point of F_p . Then equality (3.5) of the proof of Theorem 3.1 holds. As BV = VB then $(V^*V - VV^*)V = V(V^*V - VV^*)$, whence, by Kleinecke-Shirokov [11, Problem 232], $V^*V - VV^*$ is quasinilpotent and, hence, being self-adjoint, zero.

Conversely, let V satisfy $V^*V - VV^* = 0$. Then the partial isometries U_1 and, say, U, occurring in the polar decompositions of $B - (V^*V - VV^*)$ and of B, coincide. Thus, $Y = U|B|^{p-1} \in \mathcal{C}_1$ so that $Y^* = |B|^{p-1}U^* \in \mathcal{C}_1$.

We first prove that $Y^*V - VY^* = 0$. Since V and V^{*} commute with B they commute with |B| (and hence with $|B|^{p-1}$). So, $|B|U^*V = |B|VU^*$. It follows that

$$\operatorname{Ran}(U^*V - VU^*) \subseteq \operatorname{Ker}|B| = \operatorname{Ker}|B|^{p-1}.$$

Hence, since $|B|^{p-1}V = V|B|^{p-1}$, therefore $Y^*V - VY^* = 0$.

Similarly, from the equality $|B|U^*V^* = |B|V^*U^*$ it follows that $Y^*V^* - V^*Y^* =$ 0. Hence, $V^*Y - YV^* + V^*Y^* - Y^*V^* = 0$. Substitute into equality (3.1) of the proof of Theorem 3.1 (the expression for $D_V F_p$, the Fréchet derivative of F_p at V). As $YS \in \mathcal{C}_1$ and $Y^*S \in \mathcal{C}_1$, it follows by (3.1) that $(D_VF_p)(S) = 0$ for all S in $\mathcal{L}(H).$

(b) follows immediately from (a) as in [15, Theorem 3.2 (c)].

(c) Let B be normal. If V is a critical point of F_2 , then equality (3.2) of the proof of Theorem 3.1 says that

$$[\Re B - (V^*V - VV^*)]V = V[\Re B - (V^*V - VV^*)].$$

Since V commutes with B then (by Fuglede) V commutes with B^* and hence with $\Re B$. The result now follows as in (a).

The proof of the converse implication (V satisfies $V^*V - VV^* = 0 \Rightarrow V$ is a critical point of F_2) depends only on V and V^* commuting with B and is therefore the same as in (a).

Indeed, the proof in (a) of the implication, $V^*V - VV^* = 0 \Rightarrow V$ is a critical point of F_p , for 1 , holds (via Fuglede's Theorem) for normal <math>B.

4. GLOBAL THEORY

Theorem 4.1. Let B be self-adjoint, let BX = XB and let B be in C_p . Let $\mathfrak{S} = \{X : X^*X - XX^* \in \mathcal{C}_p\}$. Then, if $X \in \mathfrak{S}$,

(a) for
$$1 ,$$

(4.1)
$$\|B - (X^*X - XX^*)\|_p \ge \|B\|_p$$

with equality holding in (4.1) if and only if $X^*X - XX^* = 0$;

(b) for p = 2, the same result as in (a) holds if B is assumed normal rather than self-adjoint.

Proof. (a) First, suppose the operators X in \mathfrak{S} are contractions, i.e., such that $||X|| \leq 1$. Suppose also that the underlying space H is finite dimensional. (The argument here is analogous to [14, Theorem 5.7].) The set of contractions is bounded and closed (for the condition $X^*X - I \leq 0$ characterises the contractions, and the map $X \to X^*X$ is continuous; cf. [11, Problem 129]). Hence, \mathfrak{S} is compact since H is finite dimensional. Therefore, the continuous map $F_p: X \to ||B-(X^*X-XX^*)||_p^p$ is bounded, attains its bounds and thus has a global minimizer, and hence a critical point, at V, say. Since, by Theorem 3.2(a), $V^*V - VV^* = 0$, therefore

(4.2)
$$\|B - (X^*X - XX^*)\|_p \ge \|B\|_p.$$

Conversely, if equality holds in (4.2) for some point X, then that X is a global minimizer, hence a critical point of F_p , whence, by Theorem 3.2(a), $X^*X - XX^* = 0$.

The extension to infinite-dimensional H is similar to [1, Theorem 3.5]. As the operator B is compact and normal there exists a basis $\{\phi_i\}$ of H consisting of eigenvectors of B which may be ordered such that $|\lambda_1| \ge |\lambda_2| \ge \ldots$ where $B\phi_i = \lambda_i \phi_i$ (and where the eigenvalues are repeated according to multiplicity). Let

$$H_k = \operatorname{Span}\{\phi_i : B\phi_i = \lambda_i \phi_i, i = 1, \dots, k\}.$$

 H_k is invariant under X and X^{*}; for if ϕ_i is an eigenvector of B, then so are $X\phi_i$ and $X^*\phi_i$ with the same eigenvalues (since B commutes with X and X^{*}). Therefore, if E_k denotes the orthogonal projection onto H_k , then $E_kX = XE_k$. Hence E_kBE_k commutes with E_kXE_k (and with $E_kX^*E_k$) and hence, by the finite-dimensional inequality (4.2) applied to the contraction E_kXE_k ,

$$||(E_k B E_k) - [(E_k X E_k)^* (E_k X E_k) - (E_k X E_k) (E_k X E_k)^*]||_p \ge ||E_k B E_k||_p,$$

that is, $||E_k[B - (X^*X - XX^*)]E_k||_p \ge ||E_kBE_k||_p$. Now let $k \to \infty$. Then $E_k \to I$ and from [8, Lemma 2] (cf. [1, Theorem 3.5]), it follows that inequality (4.2) holds for infinite-dimensional H.

The condition that the operator X in \mathfrak{S} is a contraction may now be lifted. Let X be arbitrary in \mathcal{S} ; then by applying the inequality (4.2) to the contraction X/||X||, the result immediately follows.

162

(b) follows similarly to (a) from the corresponding local result, Theorem 3.2(c). $\hfill \Box$

Theorem 4.2. Let B be normal, let BX = XB and let B be in C_1 . Then, if $X^*X - XX^* \in C_1$,

$$||B - (X^*X - XX^*)||_1 \ge ||B||_1.$$

Proof. Let B = U|B| be the polar decomposition of B. As U is a partial isometry, so is U^* , and so $||U^*|| = 1$. Since, by [18, Theorem 2.3.10], $||U^*T||_1 \le ||U^*|| ||T||_1 = ||T||_1$ for arbitrary T in C_1 . Then, by [18, Lemma 2.3.3],

(4.3)
$$||B - (X^*X - XX^*)||_1 \ge ||B| - U^*(X^*X - XX^*)||_1 \ge |\tau[|B| - U^*(X^*X - XX^*)]|_1$$

where

$$\tau[|B| - U^*(X^*X - XX^*)] = \sum_n \langle [|B| - U^*(X^*X - XX^*)]\phi_n, \phi_n \rangle$$

for an arbitrary orthonormal basis $\{\phi_i\}$ of H.

Take $\{\phi_i\}$ as the orthonormal basis of H consisting of eigenvectors of the compact normal operator |B|. Let $\{\psi_m\}$ be an orthonormal basis of Ker |B| and let $\{\xi_k\}$ be an orthonormal basis of (Ker $|B|)^{\perp}$ consisting of eigenvectors of |B|. Thus, $\{\phi_n\} = \{\psi_m\} \cup \{\xi_k\}$. Then $\sum_m \langle [|B| - U^*(X^*X - XX^*)]\psi_m, \psi_m \rangle = 0$ because $\psi_m \in \text{Ker } |B| = \text{Ker } U$; and $\sum_k \langle |B|\xi_k, \xi_k \rangle = ||B||_1$. Further, since BX = XB and $BX^* = X^*B$, it can be checked that $\langle U^*X^*X\xi_k, \xi_k \rangle = \langle X^*U^*X\xi_k, \xi_k \rangle$. Hence, by the invariance of trace [18, Theorem 2.2.4 (v)], $\tau [U^*(X^*X - XX^*)] = 0$. Therefore, by (4.3),

$$||B - (X^*X - XX^*)||_1 \ge \tau(|B|) = ||B||_1.$$

In the special case when B is positive, the proof of the trace norm result is simple and does not require the commutativity condition.

Theorem 4.3. Let B be positive and be in C_1 . Then, if $X^*X - XX^* \in C_1$,

$$|B - (X^*X - XX^*)||_1 \ge ||B||_1.$$

Proof. Let B be positive so that B = |B|. Then, by [18, Lemma 2.3.3] and the linearity of trace [18, Theorem 2.2.4],

$$||B - (X^*X - XX^*)||_1 \ge |\tau[B - (X^*X - XX^*)]|$$

= $|\tau[B]| = \tau[|B|] = ||B||_1.$

If B and X do not commute, then either $||B - (X^*X - XX^*)||_p \ge ||B||_p$, for $1 \le p < \infty$, is reversed (Example 4.1) or $||B - (X^*X - XX^*)||_p = ||B||_p$ without $X^*X - XX^* = 0$ (Example 4.2).

Example 4.1. Take $B = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$ and $X = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ so that $B = B^*$ and $BX \neq XB$. For $1 \leq p < \infty$, as $||T||_p^p = \sum_i s_i^p(T)$, where $s_i(T)$ denotes the *i*th eigenvalue of |T|, we get, for $1 \leq p < \infty$,

$$||B - (X^*X - XX^*)||_p^p = 1^p + 1^p < 3^p + 3^p = ||B||_p^p.$$

Example 4.2. Take $X = f \otimes g$ and $B = f \otimes f$, where $f \neq g$ and ||f|| = ||g|| = 1, so that $B = B^*(\geq 0)$ and $BX \neq XB$. Then $X^*X - XX^* = f \otimes f - g \otimes g \neq 0$ and, as $||f \otimes g||_p = ||f|| ||g||$ for $1 \leq p < \infty$ [18, p. 90], we have

$$||B - (X^*X - XX^*)||_p = ||g \otimes g||_p (=1) = ||f \otimes f||_p = ||B||_p.$$

Finally, the inequality $||B - (X^*X - XX^*)||_p \ge ||B||_p$ may be reversed for 0 .

Example 4.3. Take $B = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} (\geq 0)$ and $X = \begin{bmatrix} 3 & \sqrt{6} \\ -3 & 3 \end{bmatrix}$ so that $B = B^*$ and BX = XB. Then for 0 we have the strict inequality

$$||B - (X^*X - XX^*)||_p^p = 6^p < 2 \cdot 3^p = ||B||_p^p.$$

(This example also shows that even if the conditions of Theorem 4.2 are met, a minimizer of $||B - (X^*X - XX^*)||_1$ need not be normal: for here

$$||B - (X^*X - XX^*)||_p (= 6) = ||B||_1,$$

yet $X^*X - XX^* \neq 0.$)

References

- J. G. Aiken, J. A. Erdos, and J. A. Goldstein, Unitary approximation of positive operators, Illinois J. Math 24 (1980), 61–72. MR0550652 (81a:47026)
- [2] J. Anderson, On normal derivatives, Proc. Amer. Math. Soc. 38 (1973), 135–140. MR0312313 (47:875)
- [3] H. Berens and M. Finzel, A problem in linear matrix approximation, Math. Nachr. 175 (1995), 33–46. MR1355011 (96i:47030)
- [4] S. Bouali and S. Cherki, Approximation by generalized commutators, Acta Sci. Math. (Szeged)
 63 (1997), 273–278. MR1459791 (98j:47077)
- [5] B. P Duggal, A remark on normal derivations, Proc. Amer. Math. Soc. 126 (1998), 2047–2052. MR1451795 (98h:47050)
- [6] B. P. Duggal, On the range, kernel orthogonality of derivations, Lin. Alg. Appl. 304 (2000), 1–3, 103–108. MR1734207 (2000k:47042)
- [7] N. Dunford and J. T. Schwarz, Linear operators, part II, Interscience, New York, 1964.
- [8] J. A. Erdos, On the trace of a trace class operator, Bull. Lond. Math. Soc. 6 (1974), 47–50. MR0370246 (51:6473)
- [9] P. R. Halmos, Commutators of operators, II, Amer. J. Math. 76 (1954), 191–198. MR0059484 (15:538d)
- [10] _____, Positive approximants of operators, Indiana Univ. Math. J. 21 (1972), 951–960. MR0291829 (45:919)
- [11] _____, A Hilbert space problem book, second ed., Springer-Verlag, New York, 1982. MR0675952 (84e:47001)
- [12] F. Kittaneh, Normal derivations in norm ideals, Proc. Amer. Math. Soc. 12 (1995), 1779– 1785. MR1242091 (95g:47054)
- [13] _____, Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl. 203 (1997), 868–873. MR1417136 (97f:47033)
- [14] P. J. Maher, Partially isometric approximation of positive operators, Illinois J. Math. 33 (1989), 227–243. MR0987820 (90c:47038)
- [15] _____, Commutator approximants, Proc. Amer. Math. Soc. 115 (1992), 995–1000. MR1086335 (92j:47059)
- [16] S. Mercheri, On minimizing $||S (AX XB)||_p^p$, Serdica Math. J. **26** (2000), 119–126. MR1794930 (2001j:47033)
- [17] _____, Another version of Maher's inequality, submitted, 2005.
- [18] J. R. Ringrose, Compact non-self-adjoint operators, Van Nostrand Rheinhold, London, 1971.

164

- [19] M. Wielandt, Über die ünbeschränktheit der Operatoren des Quantenmechanik, Math. Ann. 121 (1949), 21. MR0030701 (11:38g)
- [20] A. Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. 71 (1947), 738–739. MR0020724 (8:589c)

Department of Mathematics, Middlesex University, The Burroughs, London NW4 $\rm 4BT,$ United Kingdom

E-mail address: p.maher@mdx.ac.uk