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SELF-COMMUTATOR APPROXIMANTS

P. J. MAHER

(Communicated by Joseph A. Ball)

Abstract. This paper deals with minimizing ‖B − (X∗X − XX∗)‖p, where
B is fixed, self-adjoint and B ∈ Cp, and where X varies such that BX = XB
and X∗X − XX∗ ∈ Cp, 1 ≤ p < ∞. (Here, Cp, 1 ≤ p < ∞, denotes the von
Neumann-Schatten class and ‖ · ‖p its norm.) The upshot of this paper is that
‖B− (X∗X −XX∗)‖p, 1 ≤ p < ∞, is minimized if, and for 1 < p < ∞ only if,
X∗X −XX∗ = 0, and that the map X → ‖B − (X∗X −XX∗)‖p

p, 1 < p < ∞,
has a critical point at X = V if and only if V ∗V − V V ∗ = 0 (with related
results for normal B if p = 1 or 2).

1. Introduction

This paper is concerned with approximating an operator by a self-commutator
X∗X − XX∗ of operators. We study minimizing the quantity

‖B − (X∗X − XX∗)‖p, 1 ≤ p < ∞,

for fixed B in Cp and varying X such that X∗X −XX∗ ∈ Cp. (Here Cp denotes the
von Neumann-Schatten class with norm ‖ · ‖p, where 1 ≤ p < ∞.)

The related topic of approximation by commutators AX − XA, which has at-
tracted much interest, has its roots in quantum theory. The Heisenberg Uncertainty
Principle may be mathematically formulated as saying that there exists a pair A, X
of linear transformations and a (non-zero) scalar α for which

(1.1) AX − XA = αI.

Clearly, (1.1) cannot hold for square matrices A and X. (To see this, just take
the trace of both sides of (1.1).) Nor can (1.1) hold for bounded linear operators
A and X: two beautiful proofs of this are due to Wielandt [19] and Wintner [20].
This prompts the question: how close can AX − XA be to the identity?

Halmos [9], [11, Problem 233] proved that if A is normal, or if A commutes with
AX − XA, then, for all X in L(H),

(1.2) ‖I − (AX − XA)‖ ≥ ‖I‖.
Anderson [2, Theorem 1.7] generalized Halmos’ inequality (1.2): he proved that if
A is normal and commutes with B, then, for all X in L(H),

(1.3) ‖B − (AX − XA)‖ ≥ ‖B‖.
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Maher [15, Theorem 3.2] obtained the Cp variant of Anderson’s result: he proved
that if the normal operator A commutes with B and if B ∈ Cp, then, for all X such
that AX − XA ∈ Cp,

(1.4) ‖B − (AX − XA)‖p ≥ ‖B‖p, 1 ≤ p < ∞,

with equality in (1.4) if, and for 1 < p < ∞ only if, AX − XA = 0.
Using the technique of [15], Bouli and Cherki [4] and Mercheri [16] studied

approximation by “generalized commutators” AX−XC. They proved [4, Theorem
2.2], [16, Theorem 3.7] that if B ∈ Cp, if AB = BC and if the pair (A, C) has the
Putnam-Fuglede Cp property (meaning that AX = XC ⇒ A∗X = XC∗ if X ∈ Cp),
then, for all X such that AX − XC ∈ Cp,

(1.5) ‖B − (AX − XC)‖p ≥ ‖B‖p, 1 ≤ p < ∞,

with equality if, and for 1 < p < ∞ only if, AX − XC = 0. (Other related
work includes that of Berens and Finzel [3], Duggal [5], [6], Kittaneh [12], [13] and
Mercheri [17].)

In the above results (1.2), (1.3) and (1.4), the zero commutator is, to use Halmos’
terminology [10], a commutator approximant in Cp of B (and similarly, cf. (1.5)
for generalised commutators). Here, we frame hypotheses so that the zero self-
commutator, likewise, minimizes the quantity ‖B − (X∗X − XX∗)‖p. Since a
global minimizer is a critical point, we study the local behaviour of the map

Fp : X → ‖B − (X∗X − XX∗)‖p
p.

We consider the critical points of Fp (that is, {V : the Fréchet derivative DV Fp =
0}). We show in Theorem 3.1 that if a critical point (hence, in particular, a global
minimizer) V of Fp satisfies V ∗V − V V ∗ = 0 for self-adjoint B, then BV = V B.
In Theorem 3.2 we classify the critical points of Fp. Theorem 3.2 says that for
self-adjoint B such that BX = XB, the point V is a critical point of Fp if and only
if V ∗V − V V ∗ = 0.

It follows from Theorem 3.2 that every global minimizer X of Fp satisfies X∗X−
XX∗ = 0 for self-adjoint B commuting with X. The global result guarantees
the existence of global minima. Thus, it says that under the same hypotheses
(BX = XB, B∗ = B ∈ Cp) for all X such that X∗X−XX∗ ∈ Cp, where 1 < p < ∞,

(1.6) ‖B − (X∗X − XX∗)‖p ≥ ‖B‖p

with equality in (1.6) if and only if X∗X − XX∗ = 0.
There is a similar inequality for the trace norm (p = 1) proved by different

arguments in Theorem 4.2. Examples 4.1, 4.2 and 4.3 illustrate, and reinforce,
the results. Examples 4.1 and 4.2 show that if the (seemingly restrictive) condition
BX = XB is dropped, the conclusions of Theorems 4.1 and 4.2 do not hold. Finally,
Example 4.3 shows that for 0 < p < 1 the inequalities may be reversed.

2. Preliminaries

Let H denote a separable, complex Hilbert space. For details concerning the
von Neumann-Schatten classes Cp and norms ‖·‖p see [7, Chapter XI], [18, Chapter
2]. The spaces Cp are examples of 2-sided, self-adjoint ideals. Note Cp ⊆ Cq and
‖ · ‖p ≥ ‖ · ‖q if 1 ≤ p ≤ q < ∞. The Fréchet derivative of some real-valued function
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F at V is denoted by DV F and given by

(2.1) (DV F )(S) = lim
h→0

F (V + hS) − F (V )
h

(provided the R.H. limit exists). We state below the Aiken, Erdos and Goldstein
differentiation result.

Theorem 2.1 ([1, Theorem 2.1]). Let the map Φ: Cp → R
+ be given by Φ: X →

‖X‖p
p. Then:
(a) for 1 < p < ∞, the map Φ is Fréchet differentiable at every X in Cp with

derivative DXΦ given by

(DXΦ)(S) = p	 τ [|X|p−1U∗S],

where τ denotes trace, X = U |X| is the polar decomposition of X and
S ∈ Cp;

(b) for 0 < p ≤ 1, provided dim H < ∞, the same result holds at every invertible
element X.

Observe that the formula for the R.H.S. of (DXΦ)(S) makes sense: for |X|p−1U∗

∈ C1 since, by [18, Lemma 2.3.1], X ∈ Cp ⇔ |X| ∈ Cp ⇔ |X|p ∈ C1, that is,
|X|p = (|X|p−1U∗)(U |X|) ∈ C1, whence |X|p−1U∗ ∈ C1 as X = U |X| ∈ Cp ⊇ C1.

3. Local theory

The local theory of self-commutator approximation is more complicated than
the local theory of commutator approximation [15, Theorem 3.2 (b)]: inevitably
so, since differentiating a (non-commutative) product is more complicated than
differentiating a sum. The local theory centres on Theorem 3.1.

Theorem 3.1. Let B be self-adjoint in Cp, where 1 < p < ∞. Let S = {X :
X∗X − XX∗ ∈ Cp} and let Fp : S → R

+ be given by

Fp : X → ‖B − (X∗X − XX∗)‖p
p.

Then if V is a critical point of Fp such that V ∗V − V V ∗ = 0 it follows that
BV = V B.

Proof. As we shall use this proof in that of Theorem 3.2 we adopt the hypothesis
that V ∗V − V V ∗ = 0 only at the last step.

Step 1. Let V be in S so that B − (V ∗V − V V ∗) ∈ Cp. (Observe that the
set S = {X : X∗X − XX∗ ∈ Cp} properly contains Cp, for if X ∈ Cp then X ∈
S and, e.g., I ∈ S but I �∈ Cp.) Let S consist of all operators S for which
B − [(V + S)∗(V + S) − (V + S)(V + S)∗] ∈ Cp. (Thus, S also properly contains
Cp.) Let Φ: X → ‖X‖p

p and Ψ: X → B − (X∗X − XX∗). Then Fp = Φ ◦ Ψ.
Let S be arbitrary in S. By considering Fp(V + S) − Fp(V ) it follows from the
definition (2.1) of the derivative that the Fréchet derivative of Fp at V is given by

(DV Fp)(S) = (DB−(V ∗V −V V ∗)Φ)(V S∗ + SV ∗ − V ∗S − S∗V ).

Let B − (V ∗V − V V ∗) = U1|B − (V ∗V − V V ∗)| be the polar decomposition of
B−(V ∗V −V V ∗) (so that KerU1 = Ker |B−(V ∗V −V V ∗)|). Then by Theorem 2.1,
on writing

Y = U1|B − (V ∗V − V V ∗)|p−1,



160 P. J. MAHER

we have
(DV Fp)(S) = p	 τ [Y ∗(V S∗ + SV ∗ − V ∗S − S∗V )]

for all operators S in S. Note that Y ∗ (= |B − (V ∗V − V V ∗)|p−1U∗
1 ) ∈ C1 (cf.

comments after the statement of Theorem 2.1). Therefore, as 	τ (T ) = 	τ (T ∗) for
all T in C1, we have 	τ [Y ∗V S∗ − Y ∗S∗V ] = 	τ [SV ∗Y − V ∗SY ]. Hence, by the
invariance of trace [18, Theorem 2.2.4],

(3.1) (DV )(Fp)(S) = p	 τ [(V ∗Y − Y V ∗ + V ∗Y ∗ − Y ∗V ∗)S].

Step 2. Let V be a critical point of Fp so that (DV Fp)(S) = 0 for all operators
S in S. Take S = f ⊗ g, where f and g are arbitrary vectors in the underlying
Hilbert space H. (The rank one operator x → 〈x, f〉g, where x ∈ H, is denoted
f ⊗ g. Note that τ [T (f ⊗ g)] = 〈Tg, f〉 for T in L(H); cf. [18, pp. 73, 90].) Then
by (3.1)

	〈(V ∗Y − Y V ∗ + V ∗Y ∗ − Y ∗V ∗)g, f〉 = 0
which, since f and g are arbitrary, means that V ∗Y − Y V ∗ + V ∗Y ∗ − Y ∗V ∗ = 0,
that is,

(3.2) (	Y )V = V (	Y ).

Step 3. Suppose now that B is self-adjoint. Then B − (V ∗V − V V ∗) (=
U1|B− (V ∗V −V V ∗)|) is self-adjoint . Hence U1 is self-adjoint and commutes with
|B − (V ∗V − V V ∗)|, and hence Y (= U1|B − (V ∗V − V V ∗)|p−1) is self-adjoint.
Therefore, (3.2) says that

(3.3) Y V = V Y,

that is,

(3.4) U1|B − (V ∗V − V V ∗)|p−1V = V U1|B − (V ∗V − V V ∗)|p−1.

Step 4. Assertion: V satisfies

(3.5) BV − (V ∗V − V V ∗)V = V B − V (V ∗V − V V ∗).

To prove this assertion, note that equality (3.5) is equivalent to

(3.6) U1|B − (V ∗V − V V ∗)|V = V U1|B − (V ∗V − V V ∗)|.
Write Z = |B − (V ∗V − V V ∗)|p−1. Then (3.6) says that

(3.7) U1Z
1

p−1 V = V U1Z
1

p−1 .

To prove (3.7) we approximate both sides of (3.7) by polynomials in Z. The function
f : t → t1/(p−1), where t ∈ σ(Z) ⊆ R

+, can be approximated uniformly by a
sequence (pi) of polynomials without constant term (for f(0) = 0). Therefore, (3.7)
will follow by the functional calculus (cf. [15, p. 998]) from U1pi(Z)V = V U1pi(Z)
and this, in turn, will follow from

(3.8) U1Z
nV = V U1Z

n.

To prove (3.8) note that in the polar decomposition of B− (V ∗V −V V ∗), Ker U1 =
Ker |B − (V ∗V − V V ∗)| = KerZ (by the spectral theorem). Hence, (KerU1)⊥ =
Ran Z and U∗

1 U1, the orthogonal projection onto (KerU1)⊥, satisfies ZU∗
1 U1Z =

Z2. (It is simplest to write, where necessary, U∗
1 , even though U1 is self-adjoint.)

Since Y = U1Z, then (3.3) says that U1ZV = V U1Z and, as Y = Y ∗, ZU∗
1 V =

V ZU∗
1 . Thus,

Z2V = ZU∗
1 (U1ZV ) = (ZU∗

1 V )U1Z = V ZU∗
1 U1Z = V Z2.
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Taking positive square roots of Z2 [18, Theorem 1.7.7 (vi)] we get V Z = ZV .
Returning now to (3.8): for n = 1, (3.8) is the equality U1ZV = V U1Z (which is
(3.3)), and the inductive step follows from ZV = V Z. This proves the assertion.

Step 5. If, finally, V ∗V − V V ∗ = 0 then (3.5) forces BV = V B. �

Note. The proof in Theorem 3.1 of the implication, V is a critical point of Fp

⇒ BV − (V ∗V − V V ∗)V = V B − V (V ∗V − V V ∗), only holds for 1 < p < ∞ since
the argument involving the function f : t → t1/(p−1), where 0 ≤ t < ∞, only holds
for 1 < p < ∞.

Observe also that for non-self-adjoint B, in the case p = 2, it follows from
equality (3.2) of the proof of Theorem 3.1 that if V is a critical point of F2 such
that V ∗V − V V ∗ = 0, then (	B)V = V (	B). But this latter equality does not
force BV = V B even if B is normal: witness: B = [ 1 i

i 1 ].

Theorem 3.2. Let B be self-adjoint, let BX = XB and let B be in Cp. Let
S = {X : X∗X − XX∗ ∈ Cp} and let Fp : S → R

+ be given by

Fp : X → ‖B − (X∗X − XX∗)‖p
p.

Then:
(a) for 1 < p < ∞, the map Fp has a critical point at V if and only if V ∗V −

V V ∗ = 0;
(b) for 0 < p ≤ 1, the map Fp has a critical point at V if V ∗V − V V ∗ = 0

provided dim H < ∞ and B − (V ∗V − V V ∗) is invertible;
(c) for p = 2, the same result as in (a) holds if the condition on B of self-

adjointness is replaced by normality.

Proof. (a) Let V be a critical point of Fp. Then equality (3.5) of the proof of
Theorem 3.1 holds. As BV = V B then (V ∗V −V V ∗)V = V (V ∗V −V V ∗), whence,
by Kleinecke-Shirokov [11, Problem 232], V ∗V −V V ∗ is quasinilpotent and, hence,
being self-adjoint, zero.

Conversely, let V satisfy V ∗V − V V ∗ = 0. Then the partial isometries U1 and,
say, U , occurring in the polar decompositions of B − (V ∗V − V V ∗) and of B,
coincide. Thus, Y = U |B|p−1 ∈ C1 so that Y ∗ = |B|p−1U∗ ∈ C1.

We first prove that Y ∗V − V Y ∗ = 0. Since V and V ∗ commute with B they
commute with |B| (and hence with |B|p−1). So, |B|U∗V = |B|V U∗. It follows that

Ran(U∗V − V U∗) ⊆ Ker |B| = Ker |B|p−1.

Hence, since |B|p−1V = V |B|p−1, therefore Y ∗V − V Y ∗ = 0.
Similarly, from the equality |B|U∗V ∗ = |B|V ∗U∗ it follows that Y ∗V ∗−V ∗Y ∗ =

0. Hence, V ∗Y − Y V ∗ + V ∗Y ∗ − Y ∗V ∗ = 0. Substitute into equality (3.1) of the
proof of Theorem 3.1 (the expression for DV Fp, the Fréchet derivative of Fp at V ).
As Y S ∈ C1 and Y ∗S ∈ C1, it follows by (3.1) that (DV Fp)(S) = 0 for all S in
L(H).

(b) follows immediately from (a) as in [15, Theorem 3.2 (c)].
(c) Let B be normal. If V is a critical point of F2, then equality (3.2) of the

proof of Theorem 3.1 says that

[	B − (V ∗V − V V ∗)]V = V [	B − (V ∗V − V V ∗)].

Since V commutes with B then (by Fuglede) V commutes with B∗ and hence with
	B. The result now follows as in (a).



162 P. J. MAHER

The proof of the converse implication (V satisfies V ∗V − V V ∗ = 0 ⇒ V is a
critical point of F2) depends only on V and V ∗ commuting with B and is therefore
the same as in (a). �

Indeed, the proof in (a) of the implication, V ∗V − V V ∗ = 0 ⇒ V is a critical
point of Fp, for 1 < p < ∞, holds (via Fuglede’s Theorem) for normal B.

4. Global theory

Theorem 4.1. Let B be self-adjoint, let BX = XB and let B be in Cp. Let
S = {X : X∗X − XX∗ ∈ Cp}. Then, if X ∈ S,

(a) for 1 < p < ∞,

(4.1) ‖B − (X∗X − XX∗)‖p ≥ ‖B‖p

with equality holding in (4.1) if and only if X∗X − XX∗ = 0;
(b) for p = 2, the same result as in (a) holds if B is assumed normal rather

than self-adjoint.

Proof. (a) First, suppose the operators X in S are contractions, i.e., such that
‖X‖ ≤ 1. Suppose also that the underlying space H is finite dimensional. (The ar-
gument here is analogous to [14, Theorem 5.7].) The set of contractions is bounded
and closed (for the condition X∗X − I ≤ 0 characterises the contractions, and the
map X → X∗X is continuous; cf. [11, Problem 129]). Hence, S is compact since H
is finite dimensional. Therefore, the continuous map Fp : X → ‖B−(X∗X−XX∗)‖p

p

is bounded, attains its bounds and thus has a global minimizer, and hence a critical
point, at V , say. Since, by Theorem 3.2(a), V ∗V − V V ∗ = 0, therefore

(4.2) ‖B − (X∗X − XX∗)‖p ≥ ‖B‖p.

Conversely, if equality holds in (4.2) for some point X, then that X is a global
minimizer, hence a critical point of Fp, whence, by Theorem 3.2(a), X∗X−XX∗ =
0.

The extension to infinite-dimensional H is similar to [1, Theorem 3.5]. As the
operator B is compact and normal there exists a basis {φi} of H consisting of
eigenvectors of B which may be ordered such that |λ1| ≥ |λ2| ≥ . . . where Bφi =
λiφi (and where the eigenvalues are repeated according to multiplicity). Let

Hk = Span{φi : Bφi = λiφi, i = 1, . . . , k}.
Hk is invariant under X and X∗; for if φi is an eigenvector of B, then so are Xφi and
X∗φi with the same eigenvalues (since B commutes with X and X∗). Therefore, if
Ek denotes the orthogonal projection onto Hk, then EkX = XEk. Hence EkBEk

commutes with EkXEk (and with EkX∗Ek) and hence, by the finite-dimensional
inequality (4.2) applied to the contraction EkXEk,

‖(EkBEk) − [(EkXEk)∗(EkXEk) − (EkXEk)(EkXEk)∗]‖p ≥ ‖EkBEk‖p,

that is, ‖Ek[B−(X∗X−XX∗)]Ek‖p ≥ ‖EkBEk‖p. Now let k → ∞. Then Ek → I
and from [8, Lemma 2] (cf. [1, Theorem 3.5]), it follows that inequality (4.2) holds
for infinite-dimensional H.

The condition that the operator X in S is a contraction may now be lifted.
Let X be arbitrary in S; then by applying the inequality (4.2) to the contraction
X/‖X‖, the result immediately follows.
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(b) follows similarly to (a) from the corresponding local result, Theorem 3.2(c).
�

Theorem 4.2. Let B be normal, let BX = XB and let B be in C1. Then, if
X∗X − XX∗ ∈ C1,

‖B − (X∗X − XX∗)‖1 ≥ ‖B‖1.

Proof. Let B = U |B| be the polar decomposition of B. As U is a partial isometry,
so is U∗, and so ‖U∗‖ = 1. Since, by [18, Theorem 2.3.10], ‖U∗T‖1 ≤ ‖U∗‖‖T‖1 =
‖T‖1 for arbitrary T in C1. Then, by [18, Lemma 2.3.3],

‖B − (X∗X − XX∗)‖1 ≥ ‖|B| − U∗(X∗X − XX∗)‖1

≥ |τ [|B| − U∗(X∗X − XX∗)]|,(4.3)

where

τ [|B| − U∗(X∗X − XX∗)] =
∑

n

〈[|B| − U∗(X∗X − XX∗)]φn, φn〉

for an arbitrary orthonormal basis {φi} of H.
Take {φi} as the orthonormal basis of H consisting of eigenvectors of the compact

normal operator |B|. Let {ψm} be an orthonormal basis of Ker |B| and let {ξk}
be an orthonormal basis of (Ker |B|)⊥ consisting of eigenvectors of |B|. Thus,
{φn} = {ψm} ∪ {ξk}. Then

∑
m〈[|B| − U∗(X∗X − XX∗)]ψm, ψm〉 = 0 because

ψm ∈ Ker |B| = Ker U ; and
∑

k〈|B|ξk, ξk〉 = ‖B‖1. Further, since BX = XB and
BX∗ = X∗B, it can be checked that 〈U∗X∗Xξk, ξk〉 = 〈X∗U∗Xξk, ξk〉. Hence, by
the invariance of trace [18, Theorem 2.2.4 (v)], τ [U∗(X∗X−XX∗)] = 0. Therefore,
by (4.3),

‖B − (X∗X − XX∗)‖1 ≥ τ (|B|) = ‖B‖1.

�

In the special case when B is positive, the proof of the trace norm result is simple
and does not require the commutativity condition.

Theorem 4.3. Let B be positive and be in C1. Then, if X∗X − XX∗ ∈ C1,

‖B − (X∗X − XX∗)‖1 ≥ ‖B‖1.

Proof. Let B be positive so that B = |B|. Then, by [18, Lemma 2.3.3] and the
linearity of trace [18, Theorem 2.2.4],

‖B − (X∗X − XX∗)‖1 ≥ |τ [B − (X∗X − XX∗)]|
= |τ [B]| = τ [|B|] = ‖B‖1.

�

If B and X do not commute, then either ‖B − (X∗X − XX∗)‖p ≥ ‖B‖p, for
1 ≤ p < ∞, is reversed (Example 4.1) or ‖B − (X∗X − XX∗)‖p = ‖B‖p without
X∗X − XX∗ = 0 (Example 4.2).

Example 4.1. Take B =
[

3 0
0 −3

]
and X = [ 1 1

2 2 ] so that B = B∗ and BX �= XB.
For 1 ≤ p < ∞, as ‖T‖p

p =
∑

i sp
i (T ), where si(T ) denotes the ith eigenvalue of |T |,

we get, for 1 ≤ p < ∞,

‖B − (X∗X − XX∗)‖p
p = 1p + 1p < 3p + 3p = ‖B‖p

p.
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Example 4.2. Take X = f ⊗ g and B = f ⊗ f , where f �= g and ‖f‖ = ‖g‖ = 1,
so that B = B∗(≥ 0) and BX �= XB. Then X∗X −XX∗ = f ⊗ f − g ⊗ g �= 0 and,
as ‖f ⊗ g‖p = ‖f‖‖g‖ for 1 ≤ p < ∞ [18, p. 90], we have

‖B − (X∗X − XX∗)‖p = ‖g ⊗ g‖p(= 1) = ‖f ⊗ f‖p = ‖B‖p.

Finally, the inequality ‖B − (X∗X − XX∗)‖p ≥ ‖B‖p may be reversed for 0 <
p < 1.

Example 4.3. Take B = [ 3 0
0 3 ] (≥ 0) and X =

[
3

√
6

−3 3

]
so that B = B∗ and

BX = XB. Then for 0 < p < 1 we have the strict inequality

‖B − (X∗X − XX∗)‖p
p = 6p < 2 · 3p = ‖B‖p

p.

(This example also shows that even if the conditions of Theorem 4.2 are met, a
minimizer of ‖B − (X∗X − XX∗)‖1 need not be normal: for here

‖B − (X∗X − XX∗)‖p(= 6) = ‖B‖1,

yet X∗X − XX∗ �= 0.)
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