## A stability property for linear groups

HTML articles powered by AMS MathViewer

- by Marian F. Anton
- Proc. Amer. Math. Soc.
**134**(2006), 93-98 - DOI: https://doi.org/10.1090/S0002-9939-05-07946-3
- Published electronically: June 14, 2005
- PDF | Request permission

## Abstract:

For suitable rings of integers $R$, we show that the mod $p$ group cohomology for $GL_{n+3p-5}(R)$ comes from $GL_\infty (R)$ when restricted to the diagonal matrices $D_n(R)$ for all ranks $n\ge 2$.## References

- Marian F. Anton,
*On a conjecture of Quillen at the prime $3$*, J. Pure Appl. Algebra**144**(1999), no.Β 1, 1β20. MR**1723188**, DOI 10.1016/S0022-4049(98)00050-4 - Marian F. Anton,
*An elementary invariant problem and general linear group cohomology restricted to the diagonal subgroup*, Trans. Amer. Math. Soc.**355**(2003), no.Β 6, 2327β2340. MR**1973992**, DOI 10.1090/S0002-9947-03-03255-0 - Kenneth S. Brown,
*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR**1324339** - William G. Dwyer and Eric M. Friedlander,
*Algebraic and etale $K$-theory*, Trans. Amer. Math. Soc.**292**(1985), no.Β 1, 247β280. MR**805962**, DOI 10.1090/S0002-9947-1985-0805962-2 - W. G. Dwyer and E. M. Friedlander,
*Conjectural calculations of general linear group homology*, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp.Β 135β147. MR**862634**, DOI 10.1090/conm/055.1/862634 - William G. Dwyer and Eric M. Friedlander,
*Topological models for arithmetic*, Topology**33**(1994), no.Β 1, 1β24. MR**1259512**, DOI 10.1016/0040-9383(94)90032-9 - Allen Hatcher,
*Algebraic topology*, Cambridge University Press, Cambridge, 2002. MR**1867354** - Wilberd van der Kallen,
*Homology stability for linear groups*, Invent. Math.**60**(1980), no.Β 3, 269β295. MR**586429**, DOI 10.1007/BF01390018 - Stephen A. Mitchell,
*On the plus construction for $B\textrm {GL}\,\textbf {Z}[\frac 12]$ at the prime $2$*, Math. Z.**209**(1992), no.Β 2, 205β222. MR**1147814**, DOI 10.1007/BF02570830 - Stephen A. Mitchell,
*Units and general linear group cohomology for a ring of algebraic integers*, Math. Z.**228**(1998), no.Β 2, 207β220. MR**1630567**, DOI 10.1007/PL00004609 - Daniel Quillen,
*The spectrum of an equivariant cohomology ring. I, II*, Ann. of Math. (2)**94**(1971), 549β572; ibid. (2) 94 (1971), 573β602. MR**298694**, DOI 10.2307/1970770

## Bibliographic Information

**Marian F. Anton**- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027 β and β I.M.A.R., P.O. Box 1-764, Bucharest, Romania 70700
- Email: anton@ms.uky.edu
- Received by editor(s): September 3, 2004
- Received by editor(s) in revised form: September 15, 2004
- Published electronically: June 14, 2005
- Communicated by: Paul Goerss
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**134**(2006), 93-98 - MSC (2000): Primary 19D55, 20G30
- DOI: https://doi.org/10.1090/S0002-9939-05-07946-3
- MathSciNet review: 2170547