## Exponents of class groups of real quadratic function fields (II)

HTML articles powered by AMS MathViewer

- by Kalyan Chakraborty and Anirban Mukhopadhyay
- Proc. Amer. Math. Soc.
**134**(2006), 51-54 - DOI: https://doi.org/10.1090/S0002-9939-05-07953-0
- Published electronically: June 13, 2005
- PDF | Request permission

## Abstract:

Let $g$ be an even positive integer. We show that there are $\gg q^{l/g}/l^2$ polynomials $D\in \mathbb F_q[t]$ with $\deg (D)\le l$ such that the ideal class group of the real quadratic extensions $\mathbb F_q(t,\sqrt D)$ have an element of order $g$.## References

- Asako Nakamura,
*Pell’s equation on function fields*, Sūgaku**54**(2002), no. 3, 308–313 (Japanese). MR**1929899** - David A. Cardon and M. Ram Murty,
*Exponents of class groups of quadratic function fields over finite fields*, Canad. Math. Bull.**44**(2001), no. 4, 398–407. MR**1863632**, DOI 10.4153/CMB-2001-040-0 - Kalyan Chakraborty and Anirban Mukhopadhyay,
*Exponents of class groups of real quadratic function fields*, Proc. Amer. Math. Soc.**132**(2004), no. 7, 1951–1955. MR**2053965**, DOI 10.1090/S0002-9939-04-07269-7 - Christian Friesen,
*Class number divisibility in real quadratic function fields*, Canad. Math. Bull.**35**(1992), no. 3, 361–370. MR**1184013**, DOI 10.4153/CMB-1992-048-5 - Christian Friesen and Paul van Wamelen,
*Class numbers of real quadratic function fields*, Acta Arith.**81**(1997), no. 1, 45–55. MR**1454155**, DOI 10.4064/aa-81-1-45-55 - K. Chakraborty and M. Ram Murty,
*On the number of real quadratic fields with class number divisible by 3*, Proc. Amer. Math. Soc.**131**(2003), no. 1, 41–44. MR**1929021**, DOI 10.1090/S0002-9939-02-06603-0 - Florian Luca,
*A note on the divisibility of class numbers of real quadratic fields*, C. R. Math. Acad. Sci. Soc. R. Can.**25**(2003), no. 3, 71–75 (English, with French summary). MR**1999181** - M. Ram Murty,
*Exponents of class groups of quadratic fields*, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 229–239. MR**1691322** - Michael Rosen,
*Number theory in function fields*, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR**1876657**, DOI 10.1007/978-1-4757-6046-0 - Gang Yu,
*A note on the divisibility of class numbers of real quadratic fields*, J. Number Theory**97**(2002), no. 1, 35–44. MR**1939135**, DOI 10.1006/jnth.2001.2773

## Bibliographic Information

**Kalyan Chakraborty**- Affiliation: Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India
- Email: kalyan@mri.ernet.in
**Anirban Mukhopadhyay**- Affiliation: Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India
- Email: anirban@imsc.res.in
- Received by editor(s): March 26, 2004
- Received by editor(s) in revised form: August 27, 2004
- Published electronically: June 13, 2005
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**134**(2006), 51-54 - MSC (2000): Primary 11R58; Secondary 11R29
- DOI: https://doi.org/10.1090/S0002-9939-05-07953-0
- MathSciNet review: 2170542