## Convergence theorem for zeros of generalized Lipschitz generalized phi-quasi-accretive operators

HTML articles powered by AMS MathViewer

- by C. E. Chidume and C. O. Chidume
- Proc. Amer. Math. Soc.
**134**(2006), 243-251 - DOI: https://doi.org/10.1090/S0002-9939-05-07954-2
- Published electronically: June 13, 2005
- PDF | Request permission

## Abstract:

Let $E$ be a uniformly smooth real Banach space and let $A: E \rightarrow E$ be a mapping with $N(A)\neq \emptyset$. Suppose $A$ is a generalized Lipschitz generalized $\Phi$-quasi-accretive mapping. Let $\{a_{n}\}, \{b_{n}\},$ and $\{c_{n}\}$ be real sequences in [0,1] satisfying the following conditions: (i) $a_{n} + b_{n} + c_{n} = 1$; (ii) $\sum (b_{n} + c_{n} ) = \infty$; (iii) $\sum c_{n} < \infty$; (iv) $\lim b_{n} = 0.$ Let $\{x_{n}\}$ be generated iteratively from arbitrary $x_{0}\in E$ by \[ x_{n+1} = a_{n}x_{n} + b_{n}Sx_{n} + c_{n}u_{n}, n\geq 0,\] where $S: E\rightarrow E$ is defined by $Sx:=x-Ax ~\forall x\in E$ and $\{u_{n}\}$ is an arbitrary bounded sequence in $E$. Then, there exists $\gamma _{0}\in \Re$ such that if $b_{n} + c_{n} \leq \gamma _{0} ~\forall ~ n\geq 0,$ the sequence $\{x_{n}\}$ converges strongly to the unique solution of the equation $Au = 0$. A related result deals with approximation of the unique fixed point of a generalized Lipschitz and generalized $\phi$-hemi-contractive mapping.## References

- Felix E. Browder,
*Nonlinear operators and nonlinear equations of evolution in Banach spaces*, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1976, pp. 1–308. MR**0405188** - Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou,
*Iterative methods for nonlinear operator equations in Banach spaces*, Nova Science Publishers, Inc., Huntington, NY, 2002. MR**2016857** - S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung, and S. M. Kang,
*Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces*, J. Math. Anal. Appl.**224**(1998), no. 1, 149–165. MR**1632970**, DOI 10.1006/jmaa.1998.5993 - C. E. Chidume,
*Iterative approximation of fixed points of Lipschitz pseudocontractive maps*, Proc. Amer. Math. Soc.**129**(2001), no. 8, 2245–2251. MR**1823906**, DOI 10.1090/S0002-9939-01-06078-6 - C. E. Chidume and H. Zegeye,
*Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps*, Proc. Amer. Math. Soc.**132**(2004), no. 3, 831–840. MR**2019962**, DOI 10.1090/S0002-9939-03-07101-6 - Klaus Deimling,
*Nonlinear functional analysis*, Springer-Verlag, Berlin, 1985. MR**787404**, DOI 10.1007/978-3-662-00547-7 - Feng Gu,
*Convergence theorems of $\Phi$-pseudo contractive type mappings in normed linear spaces*, Northeast. Math. J.**17**(2001), no. 3, 340–346. MR**2011842** - N. Hirano and Zhenyu Huang,
*Convergence theorems for multivalued $\phi$-hemicontractive operators and $\phi$-strongly accretive operators*, Comput. Math. Appl.**46**(2003), no. 10-11, 1461–1471. MR**2024221**, DOI 10.1016/S0898-1221(03)90183-0 - Shiro Ishikawa,
*Fixed points by a new iteration method*, Proc. Amer. Math. Soc.**44**(1974), 147–150. MR**336469**, DOI 10.1090/S0002-9939-1974-0336469-5 - Li Shan Liu,
*Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces*, J. Math. Anal. Appl.**194**(1995), no. 1, 114–125. MR**1353071**, DOI 10.1006/jmaa.1995.1289 - W. Robert Mann,
*Mean value methods in iteration*, Proc. Amer. Math. Soc.**4**(1953), 506–510. MR**54846**, DOI 10.1090/S0002-9939-1953-0054846-3 - B. E. Rhoades,
*Comments on two fixed point iteration methods*, J. Math. Anal. Appl.**56**(1976), no. 3, 741–750. MR**430880**, DOI 10.1016/0022-247X(76)90038-X - Yuguang Xu,
*Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations*, J. Math. Anal. Appl.**224**(1998), no. 1, 91–101. MR**1632966**, DOI 10.1006/jmaa.1998.5987 - Hai Yun Zhou and Dong Qing Chen,
*Iterative approximation of fixed points for nonlinear mappings of $\Phi$-hemicontractive type in normed linear spaces*, Math. Appl. (Wuhan)**11**(1998), no. 3, 118–121 (Chinese, with English and Chinese summaries). MR**1675724** - Z. Q. Xue, H. Y. Zhou, and Y. J. Cho,
*Iterative solutions of nonlinear equations for $m$-accretive operators in Banach spaces*, J. Nonlinear Convex Anal.**1**(2000), no. 3, 313–320. MR**1807044**

## Bibliographic Information

**C. E. Chidume**- Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
- MR Author ID: 232629
- Email: chidume@ictp.trieste.it
**C. O. Chidume**- Affiliation: Department of Mathematics and Statistics, Auburn University, Auburn, Alabama
- Email: chidumeg@hotmail.com
- Received by editor(s): August 2, 2004
- Received by editor(s) in revised form: August 30, 2004
- Published electronically: June 13, 2005
- Communicated by: Joseph A. Ball
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**134**(2006), 243-251 - MSC (2000): Primary 47H09, 47J25
- DOI: https://doi.org/10.1090/S0002-9939-05-07954-2
- MathSciNet review: 2170564