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UNIMODULAR FUNCTIONS
AND INTERPOLATING BLASCHKE PRODUCTS

GEIR ARNE HJELLE

(Communicated by Juha M. Heinonen)

Abstract. The result by Bourgain that every unimodular function ψ on the
unit circle can be factored as ψ = eiṽB1B2 with B1 and B2 Blaschke prod-
ucts can be improved. We show that the same result holds with B1 and B2

interpolating Blaschke products. This will at the same time be a refinement
of Jones’s result that every unimodular function can be approximated in the

H∞-norm by a ratio of interpolating Blaschke products.

1. Introduction

A Blaschke product is an H∞-function on the open unit disk D of the form

B(z) = zm
∏

|zn|�=0

−zn

|zn|
z − zn

1 − znz
,

where {zn} is a set of points in D such that∑(
1 − |zn|

)
< ∞

and m is the number of zn’s equal to 0. The set {zn} is called the zero set of
the Blaschke product, as the zeros of B(z) are precisely the points zn counted
with multiplicity. We have |B(z)| ≤ 1 in D and non-tangential limits |B(z)| = 1
almost everywhere on the unit circle T. See [4, pp. 53–57] for further information
on Blaschke products. The Blaschke product is called interpolating if the zero set
is an interpolating sequence. That is, if every interpolation problem

f(zj) = aj , j ∈ N, (aj) ∈ �∞,

has a solution f ∈ H∞. A famous result by Carleson shows that, equivalently, a
Blaschke product with zero set {zn} is an interpolating Blaschke product if and
only if the following two conditions hold [2]:

i) infn�=m d(zn, zm) > 0.
ii) For all Carleson squares Q = {reiθ : θ0 < θ < θ0 + �(Q), 1− �(Q) < r < 1},∑

zn∈Q

(
1 − |zn|

)
< C�(Q)

for some constant C.

Received by the editors April 8, 2004 and, in revised form, August 25, 2004.
2000 Mathematics Subject Classification. Primary 30D50, 30E10.
Research supported by grants from the Research Council of Norway, project #155060, and the

Norwegian University of Science and Technology.

c©2005 American Mathematical Society
Reverts to public domain 28 years from publication

207



208 GEIR ARNE HJELLE

Here �(Q) is the base length of Q, while d denotes the pseudo-hyperbolic distance

d(z, w) =
∣∣∣∣ z − w

1 − wz

∣∣∣∣.
In 1969 Douglas and Rudin asked whether

∫
T

log |f | > −∞ was both a sufficient
and necessary condition on f �≡ 0 for f to be of the form f = gh̄ with g, h ∈ H∞ [3].
The question was answered affirmatively by Bourgain in 1986 [1]. He proved the
following result, from which the answer to Douglas’s and Rudin’s problem follows
easily.

Theorem 1. Suppose a ∈ L∞(T) with ‖a‖∞ ≤ π. Then there are Blaschke products
B1 and B2 such that

‖(a − Arg B1
B2

)∼‖∞ < c

where c is a constant.

We use f �→ f̃ for the conjugation operator. By examining Bourgain’s proof
carefully, we may strengthen the theorem. In fact,

‖a − Arg B1
B2

‖∞ + ‖(a − Arg B1
B2

)∼‖∞ < ε

for every ε > 0. Define v = −(a − Arg B1
B2

)∼. Then v ∈ L∞, and because |Bj | = 1
almost everywhere on T, Theorem 1 can be reformulated as follows:

Theorem 1′. Suppose ψ is a unimodular function on T. Then for every ε > 0
there exist Blaschke products B1 and B2 such that

(1) ψ = eiṽ B1
B2

= eiṽB1B2

for some v ∈ L∞ with ‖v‖∞ < ε and ‖ṽ‖∞ < ε.

The question of whether an arbitrary Blaschke product (and thus an arbitrary
inner function) can be approximated by an interpolating Blaschke product has been
investigated for some time. The problem, which is still open, was posed by Peter
Jones who in 1981 approximated an arbitrary unimodular function by a ratio of
interpolating Blaschke products in the H∞-norm [6]. In the present paper we do
something similar. We approximate a ratio of Blaschke products B1/B2 by a ratio
of interpolating Blaschke products B∗

1/B∗
2 in the sense that

B1
B2

= eiṽ B∗
1

B∗
2
,

with v ∈ L∞ and where ‖v‖∞ and ‖ṽ‖∞ are small. By doing so, we show that
Bourgain’s result also holds for interpolating Blaschke products.

Theorem 2. Suppose ψ is a unimodular function on T. Then for every ε > 0 there
exist interpolating Blaschke products B∗

1 and B∗
2 such that

ψ = eiṽ B∗
1

B∗
2

= eiṽB∗
1B∗

2

for some v ∈ L∞ with ‖v‖∞ < ε and ‖ṽ‖∞ < ε.

This result can also be viewed as a strengthened version of Jones’s theorem.
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2. Unimodular functions on T

To prove Theorem 2 we use a result of Marshall and Stray [7] concerning the
product of interpolating Blaschke products, and a result of Garnett and Nicolau [5]
showing how a Blaschke product can be approximated by a ratio of interpolating
Blaschke products.

Lemma 3. Let B∗
1 and B∗

2 be interpolating Blaschke products. Then for every
ε > 0 there is an interpolating Blaschke product, B∗, such that

B∗
1B∗

2 = B∗eiṽ

on T for some v ∈ L∞ with ‖v‖∞ < ε and ‖ṽ‖∞ < ε.

Proof. This lemma can, although not stated explicitly, be inferred from [7]. The
main part of the argument can also be found in [8, pp. 101–103], so we only sketch
it here. Denote the zero sets of B∗

1 and B∗
2 by {an} and {bn} respectively. Choose

δ so small that

d(an, am) ≥ 2δ and d(bn, bm) ≥ 2δ for all n �= m.

By moving zeros from B∗
1 to B∗

2 if necessary, the closed disks

∆j = {z : d(z, aj) ≤ cδ}, c small,

are disjoint and contain exactly one bn each. See Figure 1. We must show that also
the zeros left in B∗

1 can be separated from those of B∗
2 such that condition i) holds.

By Frostman’s theorem [4, p. 79] there is an ε0 ∈ (cδ, 4
3cδ) such that

B̂∗
1(z) =

B∗
1(z) − ε0

1 − ε0B∗
1(z)

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

Figure 1. The closed disks ∆j and the corresponding pseudohy-
perbolic annuli Aj . The zeros of B∗

1 and B̂∗
1 are marked •, while

the zeros of B∗
2 are marked ×.
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is a Blaschke product. It can then be shown that the zeros of B̂∗
1 lie in the pseudo-

hyperbolic annuli
Aj = {z : ε0 < d(z, aj) < δ}.

Thus they are separated from the zeros of B∗
2 . It follows that B∗ = B̂∗

1B∗
2 is an

interpolating Blaschke product approximating B∗
1B∗

2 . On T, B∗
1B∗

1 = |B∗
1 |2 = 1

almost everywhere. Hence we can write

B̂∗
1 =

B∗
1 − ε0

1 − ε0B∗
1

=
B∗

1

(
1 − ε0B∗

1

)
1 − ε0B∗

1

= B∗
1

h

h

where h = 1 − ε0B
∗
1 is an outer function. So h = eu+iũ with u ∈ L∞. This gives

B̂∗
1 = e−2iũB∗

1 and by taking ε0 small enough, we can ensure that ‖u‖∞ and ‖ũ‖∞
are less than ε

2 . �

Observe that this lemma is easily extended to finite products of interpolating
Blaschke products.

The main step in the proof of Theorem 2 is the approximation of Blaschke
products by ratios of interpolating Blaschke products. This is accomplished through
the following lemma, which is a slight modification of a result by Garnett and
Nicolau [5].

Lemma 4. Let B be a Blaschke product. Then for every ε > 0 there exist interpo-
lating Blaschke products B∗

1 and B∗
2 such that

B = eiṽ B∗
1

B∗
2

= eiṽB∗
1B∗

2

on T for some v ∈ L∞ with ‖v‖∞ < ε and ‖ṽ‖∞ < ε.

Proof. We follow the same construction as Garnett and Nicolau. Let 0 < α < β < 1,
M = 2K > 1 and δ < 1 be constants whose values will be determined later. Note
that by applying a preliminary conformal mapping we may assume |B(0)| > β. We
will consider dyadic Carleson squares of the form

Qn,j = {reiθ : 2πj2−n ≤ θ < 2π(j + 1)2−n, 1 − 2−n ≤ r < 1}

and their top-halves T (Qn,j). Let G1 = {Q(1)
1 , Q

(1)
2 , . . .} be the set of maximal Qn,j

with
inf

T (Qn,j)
|B(z)| < α.

Write S
(1)
p,k, 1 ≤ p ≤ M = 2K , for the M different Qn+K,j ⊂ Qn,j = Q

(1)
k , and let

H1 = {V (1)
1 , V

(1)
2 , . . .} be the set of maximal Qn,j for which V

(1)
l ⊂ Q

(1)
k for some

Q
(1)
k and

inf
T (V

(1)
l )

|B(z)| > β.

The function |B| has non-tangential limit 1 almost everywhere, so

(2)
∑

V
(1)

l ⊂Q
(1)
k

�(V (1)
l ) = �(Q(1)

k ).

Let

f(z) =
B(z) − w0

1 − w0B(z)
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with w0 = B(z0), z0 ∈ Q
(1)
k and |w0| = α. If 1− β is small, then Schwarz’s Lemma

applied to f implies that
sup

T (S
(1)
p,k)

|B(z)| < β.

We may also deduce that V
(1)
l ⊂ S

(1)
p,k for some p, k.

Next we iterate the construction. Let G2 = {Q(2)
1 , Q

(2)
2 , . . .} be the set of maximal

Qn,j such that

Qn,j ⊂ V
(1)
l ∈ H1 and inf

T (Qn,j)
|B(z)| < α.

The Q
(2)
k are relatively few. In fact, by [4, p. 334], given ε0 > 0 we can take

(1 − β)/(1 − α) so small that

(3)
∑

Q
(2)
k ⊂V

(1)
l

�(Q(2)
k ) < ε0�(V

(1)
l ).

The sets {S(2)
p,k} and H2 = {V (2)

l } are constructed in the same manner as above.
By repeating the argument we obtain

Q
(m)
k ⊃ S

(m)
p,k ⊃ V

(m)
l ⊃ Q

(m+1)
k .

Define
R

(m)
p,k = S

(m)
p,k \

⋃
V

(m)
l ⊂S

(m)
p,k

V
(m)
l

and observe that the zeros of B(z) are in⋃
k,m

(
Q

(m)
k \

⋃
V

(m)
l ⊂Q

(m)
k

V
(m)
l

)
.

By taking 1−α small we can make all zeros from Q
(m)
k \

⋃
V

(m)
l fall into

⋃M
p=1 R

(m)
p,k .

Factor B as B = B1 · · ·BM where Bp has zeros only in
⋃

k,m R
(m)
p,k . Fix p and

set
Γ(m)

p,k = ∂R
(m)
p,k \ ∂S

(m)
p,k .

See Figure 2. Mark points z∗ν = z∗ν(k, m, p) on Γ(m)
p,k such that

(4) d(z∗ν , z∗ν+1) = δ.

Let B∗
p be the Blaschke product with zeros

⋃
k,m z∗ν(k, m, p). Then condition i)

holds by (4). From the definition of the z∗ν ’s there is a constant c dependent on δ
such that ∑

z∗
ν∈Q

(m)
k

(
1 − |z∗ν |

)
≤ c

∑
V

(n)
l ⊂Q

(m)
k

�(V (n)
k ).

Hence by (2) and (3), ∑
z∗

ν∈Q
(m)
k

(1 − |z∗ν |) <
c

1 − ε0
�(Q(m)

k ),

so condition ii) holds for all dyadic Carleson squares, and therefore for all Carleson
squares. It follows that B∗

p is an interpolating Blaschke product. By Lemma 3
there is then an interpolating Blaschke product B∗ = eiṽB∗

1 · · ·B∗
M on T. To finish
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∂D

T (Q(m)
k )

T (S(m)
1,k )

T (V (m)
l )

R
(m)
2,k R

(m)
4,kR

(m)
3,k

∂D

Γ(m)
3,k

T (Q(m)
k )

Γ(m)
1,k Γ(m)

2,k Γ(m)
4,k

R
(m)
1,k

Figure 2. Example of a Q
(m)
k with S

(m)
p,k , V

(m)
l , R

(m)
p,k and Γ(m)

p,k

the proof we will need to show the existence of yet another interpolating Blaschke
product C∗ such that C∗ = eiũBB∗.

Before doing so we state three lemmas from [5] which help us with this last part.

Lemma 5. Let B be a Blaschke product and let {zν} be its zeros, counted with
their multiplicities. Then B is a finite product of interpolating Blaschke products
if and only if there exist positive constants d0, δ0 such that for each zν there is wν

with
d(zν , wν) ≤ d0

and
(1 − |wν |2)|B′(wν)| ≥ δ0.

Lemma 6. |B∗
p | ≤ δ1/4 on

⋃
k,m R

(m)
p,k .

Lemma 7. There exist A = A(α, β, δ, M) and η = η(α, β, δ, M) > 0 so that if

(5) inf
ξ∈∪k,mR

(m)
p,k

d(z, ξ) > A

and if
|BpB

∗
p(z)| = δ1/8,

then (
1 − |z|2

)∣∣(BpB
∗
p)′(z)

∣∣ ≥ η.

Proof of Lemma 4 continued. By Frostman’s theorem there is a constant γ with
|γ| = δ1/8 so that

Cp =
BpB

∗
p − γ

1 − γBpB∗
p

is a Blaschke product. Let z0 be such that Cp(z0) = 0. Then |(BpB
∗
p)(z0)| = δ1/8

and (
1 − |z0|2

)∣∣C ′
p(z0)

∣∣ ≥ 1 − |z0|2
1 − |γ|2

∣∣(BpB
∗
p)′(z0)

∣∣.
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If (5) holds, Lemma 7 implies that

(
1 − |z0|2

)∣∣C ′
p(z0)

∣∣ ≥ η

1 − |γ|2 > 0.

If, on the other hand, (5) does not hold, there is a ξ ∈
⋃

k,m R
(m)
p,k with d(z0, ξ) ≤ A.

From Lemma 6 we have |(BpB
∗
p)(ξ)| ≤ δ1/4, so somewhere along the hyperbolic

geodesic from z0 to ξ there is a point w with
(
1 − |w|2

)∣∣(BpB
∗
p)′(w)

∣∣ > η̂ > 0 and d(z, w) < A.

Then also (
1 − |w|2

)∣∣C ′
p(w)

∣∣ > 0.

So either way Lemma 5 tells us that Cp is a finite product of interpolating Blaschke
products.

Lemma 3 then gives us the existence of up ∈ L∞ such that C∗
p = e−iũpCp are

interpolating Blaschke products on T. Furthermore,

C∗
p =

BpB
∗
p(1 − γBpB∗

p)
1 − γBpB∗

p

e−iũp = e−iṽpBpB
∗
p or Bp = eiṽp

C∗
p

B∗
p

,

and

B = B1 · · ·BM = eiṽ C∗

B∗ = eiṽC∗B∗

where B∗ = B∗
1 · · ·B∗

M and C∗ = C∗
1 · · ·C∗

M are interpolating Blaschke products.
Also v = v1 + · · · + vM ∈ L∞ with ‖v‖∞ < ε and ‖ṽ‖∞ < ε. �

Proof of Theorem 2. From (1) we have that ψ = eiũ B1
B2

for some u ∈ L∞ with
‖u‖∞ < ε

5 and B1 and B2 Blaschke products. Lemma 4 aids us in approximating
B1 and B2 by interpolating Blaschke products B∗

i,j ,

ψ = eiũ
eiũ1B∗

1,1/B∗
1,2

eiũ2B∗
2,1/B∗

2,2

= ei(ũ+ũ1−ũ2)
B∗

1,1B
∗
2,2

B∗
1,2B

∗
2,1

.

By Lemma 3, these products may again be approximated by interpolating Blaschke
products. Thus,

ψ = ei(ũ+ũ1−ũ2)
B∗

1/eiṽ1

B∗
2/eiṽ2

= ei(ũ+ũ1−ũ2−ṽ1+ṽ2)
B∗

1

B∗
2

= eiṽB∗
1B∗

2 ,

where B∗
1 and B∗

2 are interpolating Blaschke products and v = u+u1−u2−v1+v2 ∈
L∞. The norms of u1, u2, v1 and v2 can all be taken less than ε

5 ; so also can the
norms of ũ1, ũ2, ṽ1 and ṽ2. Thus ‖v‖∞ < ε and ‖ṽ‖∞ < ε. �
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