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TOPOLOGICAL INVARIANCE OF THE SIGN OF THE
LYAPUNOV EXPONENTS IN ONE-DIMENSIONAL MAPS

HENK BRUIN AND STEFANO LUZZATTO

(Communicated by Michael Handel)

Abstract. We explore some properties of Lyapunov exponents of measures
preserved by smooth maps of the interval, and study the behaviour of the
Lyapunov exponents under topological conjugacy.

1. Statement of results

In this paper we consider C3 interval maps f : I → I, where I is a compact
interval. We let C denote the set of critical points of f : c ∈ C ⇔ Df(c) = 0. We
shall always suppose that C is finite and that each critical point is non-flat: for each
c ∈ C, there exist � = �(c) ∈ [2,∞) and K such that 1

K ≤ |f(x)−f(c)|
|x−c|� ≤ K for all

x �= c. Let M be the set of ergodic Borel f -invariant probability measures. For
every µ ∈ M, we define the Lyapunov exponent λ(µ) by

λ(µ) =
∫

log |Df |dµ.

Note that
∫

log |Df |dµ < +∞ is automatic since Df is bounded. However we can
have

∫
log |Df |dµ = −∞ if c ∈ C is a fixed point and µ is the Dirac-δ measure on

c. It follows from [15, 1] that this is essentially the only way in which log |Df | can
be non-integrable: if µ(C) = 0, then

∫
log |Df |dµ > −∞.

The sign, more than the actual value, of the Lyapunov exponent can have signif-
icant implications for the dynamics. A positive Lyapunov exponent, for example,
indicates sensitivity to initial conditions and thus “chaotic” dynamics of some kind.
Our main result concerns the extent to which the sign of the Lyapunov exponent,
which is a priori a purely metric condition, is in fact intrinsically constrained by
the topological structure of the dynamics.

Theorem 1. If f is C3 with finitely many non-flat critical points, and if µ is
non-atomic, then the sign of λ(µ) is a topological invariant.

We recall that µ is non-atomic if every point has zero measure. By the statement
that the sign of λ(µ) is a topological invariant we mean the following. Two maps
f : I → I and g : J → J are topologically conjugate if there exists a homeomorphism

Received by the editors September 5, 2004.
2000 Mathematics Subject Classification. Primary 37B10; Secondary 37A35, 11K99, 37A45.
The authors thank Juan Rivera-Letelier for drawing their attention to previous results relating

to Lemma 1 and Proposition 1. They also thank Feliks Przytycki for pointing out an error in an
earlier version of this paper.

c©2005 American Mathematical Society
Reverts to public domain 28 years from publication

265



266 HENK BRUIN AND STEFANO LUZZATTO

h : I → J such that h ◦ f = g ◦ h. The conjugacy h induces a bijection between the
space of ergodic invariant probability measures of f and of g: if µf is an ergodic
invariant probability measure for f , then the corresponding measure µg, defined by
µg(A) = µf (h−1(A)) for all measurable sets A, is an ergodic invariant probability
measure for g. Theorem 1 says that as long as both f and g are C3 with finitely
many non-flat critical points and µf is non-atomic, then the Lyapunov exponents
λ(µf ) and λ(µg) have the same sign. Clearly the actual values can vary.

The non-atomic condition is necessary in general, as a topological conjugacy can
easily map a hyperbolic attracting/repelling periodic point to a topologically at-
tracting/repelling1 neutral periodic point. The corresponding Lyapunov exponents
of the corresponding Dirac-δ measures would then be positive and zero, respec-
tively. The result is concerned with the more interesting non-atomic case and in
particular shows that the property that the exponent is zero or positive is topo-
logically invariant (we shall show below that the negative Lyapunov exponent case
always corresponds to an atomic measure).

The integrability of log |Df | means that our definition of Lyapunov exponents,
commonly used in the one-dimensional context, agrees with the more classical def-
inition in terms of the limit of the rate of growth of the derivative. Indeed, a
standard application of Birkhoff’s ergodic theorem (which relies on the integrabil-
ity property) gives

lim
n→∞

1
n

log |Dfn(x)| =
∫

log |Df |dµ = λ(µ) for µ-a.e. x.

This pointwise definition can be generalised to the so-called upper and lower Lya-
punov exponents

λ−(x) := lim inf
n→∞

1
n

log |Dfn(x)| and λ+(x) := lim sup
n→∞

1
n

log |Dfn(x)|.

These quantities are defined at every point, and a natural generalisation of the
question answered above is whether the signs of these upper and lower Lyapunov
exponents are topological invariants. It was shown in [13] in the unimodal setting,
that the positivity of the lower Lyapunov exponent along the critical orbit (the
Collet-Eckmann condition) is preserved under topological conjugacy. This result
does not hold for multimodal maps (see [16]) although it does generalise under
additional recurrence conditions on the critical orbits [10]. In [16] it is also shown
that in the context of rational maps on the Riemann sphere, the property that the
Lyapunov exponents of all invariant measures are uniformly positive is preserved
under topological conjugacy. It is not known whether this extends to C2 interval
maps.

If f is unimodal and Collet-Eckmann, then every point has a positive upper
Lyapunov exponent [14]. As the Collet-Eckmann condition is preserved under con-
jugacy, the sign of upper pointwise Lyapunov exponent is preserved under conju-
gacy for Collet-Eckmann maps. However we show that at least for lower Lyapunov
exponents this is false in general.

Proposition 1. There exist unimodal maps with points for which the sign of the
lower pointwise Lyapunov exponent is not preserved under topological conjugacy.

1If f has negative Schwarzian derivative, then a neutral periodic point cannot be two-sided
repelling.



INVARIANCE OF THE SIGN OF LYAPUNOV EXPONENTS 267

This is not restricted to orbits asymptotic to neutrally attracting or neutrally re-
pelling periodic orbits.

In [16] this result was proved for bimodal maps; their argument would not apply
to the unimodal case, but shows that the lower pointwise Lyapunov exponent need
not be preserved under a quasi-symmetric conjugacy.

We make the following conjecture:

Conjecture 1. Topological conjugacy preserves the sign of the upper pointwise
Lyapunov exponents of all points that are not attracted to a periodic orbit.

It is immediate from the ergodic theorem that for every invariant measure µ,
there are points x such that the Lyapunov exponent λ(µ) coincides with the point-
wise Lyapunov exponent λ(x). (We write λ(x) if λ+(x) = λ−(x).) However, there
are instances where a pointwise Lyapunov exponent is different from the Lyapunov
exponent of all invariant measures. This is shown in Proposition 3.

2. Proof of Theorem 1

Lemma 1. If µ ∈ M and λ(µ) < 0, then µ is the Dirac-δ measure equidistributed
on an attracting periodic orbit.

Proof. This follows from Przytycki’s result [15] which states that for µ ∈ M, λ(x) ≥
0 for µ-a.e. x. �

For the proof of Theorem 1, we need a construction developed by Hofbauer [5],
called canonical Markov extension. This Markov system is (Î , f̂), where X is a
disjoint union of closed intervals. Let P = P0 = {ξ0, . . . , ξr} be the partition of I

into the monotonicity intervals of f . Also write Pn =
∨n−1

i=0 f−i(P0), and Pn[x] is
the element of Pn containing x. We will construct X inductively.

• The base B := I belongs to Î.
• If D ∈ Î, let E = f(D ∩ ξi). If the interval E is equal to some already

existing D′ ∈ Î, then define f̂(x, D) = (f(x), D′). Otherwise, add E dis-
jointly to Î and let f̂(x, D) = (f(x), E). (Note that if x ∈ ∂ξi, then use
f(x) = limξi�y→x T (y) to define f on ∂ξ.)

The system (Î , f̂) is Markov in the sense that any component D of Î equals some
union of components of Î. If we define the projection by π(x, D) = x, then f̂ ◦ π =
π ◦ f . Due to the Markov property, the following is true:

fn(Pn[x]) = D ∈ Î if and only if f̂n(π−1(x) ∩ B) ∈ D.

If µ is f -invariant, then we can construct a measure µ̂ as follows: Let µ̂0 be the
measure ν lifted to the base B and set µ̂n = 1

n+1

∑n
i=0 µ̂0◦f̂−i. Clearly µ = µ̂n◦π−1

for each n. As was shown in [6], µ̂n converges vaguely (i.e. on compact sets) to a
limit measure, say µ̂. If µ is ergodic, then µ̂ is either a probability measure on Î,
in which case we call µ liftable, or µ̂(D) = 0 for all D ∈ Î.

Let us say that an n-periodic point p with multiplier |Dfn(p)| ≤ 1 is essential if
it is (one-sided) attracting and there exists p′ ∈ orb(p) and a critical or boundary
point c such that f i((c, p′)) ∩ C = ∅ for all i ≥ 0. This applies for example to
periodic points of multimodal maps with negative Schwarzian derivative.
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Proposition 2. Let f be a C3 multimodal interval map with non-flat critical points.
Let µ be an ergodic invariant probability measure such that µ(p) = 0 for each
periodic point p that is (i) inessential with multiplier ≤ 1, or (ii) belongs to the
boundary of the basin of another periodic point. Then µ is liftable if and only if µ
has a positive Lyapunov exponent.

This result was proved in [3] for unimodal maps with negative Schwarzian deriv-
ative. Here we give the details for the multimodal case, although the idea of proof
is the same.

Proof. The “if” part is proved in [6] using a construction from [9], except that
[6] does not cover the case of atomic measures. So let us assume that µ is the
equidistribution of a hyperbolic repelling periodic orbit orb(p), and that p is not
a boundary point of the basin of a periodic attractor. Let N = 2 × the period of
p, so fN is orientation preserving in a neighbourhood of p. Let Zk be the largest
neighbourhood of p on which fkN is monotone. Write Zk = (ak, bk).2 Because p is
not a boundary point of the basin of a periodic attractor, ak and bk are precritical
points. More precisely, there are na, nb < N such that fna(a1), fnb(b1) ∈ C, and
because fN (Zk+1) = Zk, ak ∈ f−na−(k−1)N (C) and bk ∈ f−nb−(k−1)N (C). It
follows that if p0 = π−1(p) ∩ B, then f̂ ik(p0) ∈ π−1(p) ∩ KN , where KN is the
compact part of Î consisting of all components D that can be reached by a path
B → D1 → · · · → D of length ≤ N . Clearly π−1(p) ∩ KN is finite, so it contains
an N -periodic point p̂. Because the lift µ̂ of µ is unique (see [6]), µ̂ must be equal
to the equidistribution on orb(p̂).

For the “only if” part let us start proving that the equidistribution on a stable
or neutral periodic orbit is non-liftable. Since such an orbit is essential, there is a
point p in this orbit and a critical (or boundary) point c such that fn((c, p))∩C = ∅
for all n ≥ 0. Assume that p ∈ ξk ∈ P, and let p̂ = π−1(p) ∩ B be the lift of p to
the base B of the Markov extension. Then f̂(p̂) belongs to a successor D := f(ξk)
of B, and f(c) ∈ ∂D. But since fn((c, p)) never intersects a critical point, each
f̂n(p̂) belongs a different component of Î. Therefore, the limit of the measures µ̂n

is not liftable.
Let us assume that µ is liftable, µ̂ being the lifted measure. We will show that

λ(µ) > 0. Let D ∈ Î be such that µ̂(D) > 0 and let J be an interval, compactly
contained in D, such that µ̂(J) > 0. Since µ is not the equidistribution on the orbit
of a stable or neutral periodic point p, π(J) can be chosen disjoint from orb(p).
Moreover we can choose J such that orb(∂J) ∩ J = ∅. Let F̂ : J → J be the first
return map to J . By our conditions on J each branch F̂ : Ji → J of F̂ is onto,
and by the Markov property of f̂ , F̂ |Ji

is extendible monotonically to a branch
that covers D. Clearly each branch of F̂ , say F̂ |Ji

= f̂s|Ji
, contains an s-periodic

point q. Due to a result by Martens, de Melo and van Strien [11] and also [12,
Theorem IV B’], there exists ε > 0 such that |(f̂s)′(q)| > 1 + ε, independent of the
branch. If J is sufficiently small, the Koebe Principle [12, Section IV.1] yields that
|F̂ ′(x)| > 1 + ε

2 for all x ∈ J . The Koebe Principle holds for maps with negative
Schwarzian derivative, but the work of Kozlovski [8] and in the multimodal setting
van Strien & Vargas [17] implies that the branches of F have negative Schwarzian

2If p is a boundary point of the interval I, then we have to adjust this argument to one-sided
neighbourhoods (ak, p] or [p, bk).



INVARIANCE OF THE SIGN OF LYAPUNOV EXPONENTS 269

derivative if f is C3 and J sufficiently small. It is at this moment that we use the C3

assumption. It follows from the thesis of Mike Todd [18] that a C2+ε assumption
suffices for unimodal maps.

Clearly µ̂
µ̂(J) is an F̂ -invariant probability measure on J . Let Ji, i ∈ N, be the

branch-domains of F̂ , and let si be such that F̂ |Ji
= f̂si |Ji

. Since we can write µ̂
as ∫

ϕ dµ̂ =
∑

i

si−1∑
j=0

∫
Ji

ϕ ◦ f̂ jdµ̂,

we get

λ(µ̂) =
∑

i

si−1∑
j=0

∫
Ji

log |f̂ ′| ◦ f̂ jdµ̂

=
∑

i

∫
Ji

log |(f̂si)′|dµ̂ =
∑

i

∫
Ji

log |F̂ ′|dµ̂

≥
∑

i

µ̂(Ji) log(1 +
ε

2
) = µ̂(J) log(1 +

ε

2
) > 0.

Because f ′(π(x)) = f̂ ′(x) for all x ∈ Î, this concludes the proof. �

Now we are ready to prove Theorem 1.

Proof. First assume that λ(µ) > 0, and let µ̂ be its lift to the Markov extension.
Assume that g : J → J has lift ĝ : Ĵ → Ĵ . Define ĥ : Î → Ĵ as ĥ|(Dn ⊂ Î) =
h|(Dn ⊂ I). Then ĥ∗µ̂ is a ĝ-invariant probability measure with h∗µ = ĥ∗µ̂ ◦ π−1.
Thus ĥ∗µ̂ is the lift of h∗µ. It follows that h∗µ is liftable and hence has a positive
Lyapunov exponent. (Here we should recall that µ and h∗µ are non-atomic, so they
are not associated with any periodic orbit, essential or not.)

By Lemma 1, negative Lyapunov exponents can only occur for atomic measures.
Hence the remaining case λ(µ) = 0 is also preserved under conjugacy. �

3. Pointwise Lyapunov exponents

Proof of Proposition 1. We give a counterexample based on the unimodal maps
f(x) = 4x(1 − x) and g(x) = sin(πx), both having negative Schwarzian derivative.
These maps are conjugate on the unit interval. Due to the well-known smooth
conjugacy with the tent map, we have that λ(x) = log 2 whenever the limit exists
and fn(x) �= 1 for all n ≥ 1. However, the limit need not always exist. Indeed,
let (nk) be a superexponentially increasing integer sequence, and y ∈ [0, 1] a point
such that:

• yi ∈ [12 , 1] for yi = f i(y) and 0 < i < n1. Assuming n1 is large, this means
that yi ≈ p = 3

4 , the fixed point of f , and hence Dfn1(y) ≈ 2n1 .
• yn1 is close to c such that yn1 ≈ 1 and yi ∈ [0, 1

2 ] for n1 + 1 < i ≤
2.1n1. This means that yi ≈ 0, the other fixed point, and since f ′(0) =
4, we obtain that |0 − yn1+2| = O(4−1.1n1). Consequently, |c − yn1 | =
O(

√
4−1.1n1) = O(2−1.1n1), and hence |Df1+n1(y)| = O(2n1 · 2−1.1n1) =

O(2−0.1n1), whereas |Df2.1n1(y)| = O(2n1 · 2−0.1n1 · 41.1n1) = O(22.1n1).
• Let yi ∈ [ 12 , 1] for 2.1n1 < i < n2. Hence, we find Dfn2(y) = O(2n2).
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• yn2 is close to c (and hence y1+n2 close to 1) such that yi ∈ [0, 1
2 ] for n2+1 <

i ≤ 2.1n2. It follows that |Df1+n2(y)| = O(2n1 · 2−1.1n2) = O(2−0.1n2) and
|Df2.1n1(y)| = O(22.1n2).

Continue in this fashion, and we find that the lower Lyapunov exponent is λ(y) =
lim inf 1

n log Dfn(y) = −0.1 log 2, whereas the upper Lyapunov exponent is λ(y) =
lim sup 1

n log Dfn(y) = log 2.
Now to do the same for g = h ◦ f ◦ h−1 and the corresponding ỹ = h(y), we

have to deal with different multipliers: |Dg(0)| = π < |Df(0)| and α := |Dg(p̃)| ≈
2.12 > |Df(p)| for p̃ = h(p). We now get that |Dg1+nk(ỹ)| = O(( α

π0.55 )nk) is still
exponentially large, so in this case, λ(ỹ) > 0. �

3.1. Example. We want to compare the results in this paper to an example from
[2]. In this example, two conjugate smooth unimodal maps f1 and f2 (in fact, f1

is quadratic and f2 is a sine function), for which

inf
ε>0

lim
n→∞

1
n
{0 ≤ i < n : f i

k(c) ∈ (p − ε, p + ε)} = 1

for k = 1, 2, and p = pk is the orientation reversing fixed point of fk. Yet f1

has an acip (i.e. an absolutely continuous (w.r.t Lebesgue) invariant probability
measure), and f2 has not. Clearly the Dirac measure δp is the only weak limit point
of ( 1

n

∑n−1
i=0 δfi

k(c)) for k = 1, 2. Any non-liftable measure belongs to the convex hull
of weak accumulation points of ( 1

n

∑n−1
i=0 δfi(c)); see [6]. Consequently, fk has only

liftable invariant measures, all of which have positive Lyapunov exponents. The
acip of f1 does not transform under h∗ to an acip of f2, and in fact, there is not a
single f -invariant measure µ such that h∗µ is absolutely continuous.

A result by Keller [7] implies that for k = 2, δp is the only weak limit point of
( 1

n

∑n−1
i=0 δfi

2(x)) for Lebesgue-a.e. x. Recall that a physical measure µ is defined by
the fact that for every continuous observable ϕ : [0, 1] → R,

(1) µ(ϕ) :=
∫

ϕ dµ = lim
n→∞

1
n

n−1∑
i=0

ϕ ◦ f i(x) Lebesgue-a.e.

Therefore δp is the physical measure of f2. However lim infn
1
n log |Dfn(x)| = 0

Lebesgue-a.e., because otherwise there would be an acip by [7]. This shows that it
is important in (1) to have continuous, not just L1, observables.

Since fk is not Collet-Eckmann, inf{λ(µ) : µ is fk-invariant} = 0 for k = 1, 2.
Therefore the infimum of Lyapunov exponents is not attained. This is in contrast
to the Lyapunov exponent of invariant measures supported on hyperbolic sets; see
[4]. The results below show that the spectrum of pointwise Lyapunov exponents
can be strictly larger than the spectrum of Lyapunov exponents of measures.

Proposition 3. There exists a unimodal map f such that λ(µ) > 0 for every
µ ∈ M, but there is a point x whose Lyapunov exponent exists (as a limit) and
equals 0.

Proof. We start by introducing some notation for unimodal maps. A point z < c is
called a precritical point closest to c if fS(z) = c for some iterate S and f i(c, z) �� c
for 0 ≤ i ≤ S. There is an increasing sequence (zk) of such precritical points,
starting with z0 ∈ f−1(c). The corresponding iterates Sk such that fSk(zk) = 0
are called cutting times. Clearly S0 = 1 and Sk > Sk−1 for each k ≥ 1. Let
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Uk = (zk, zk+1) and Ûk = (ẑk+1, ẑk) be the interval at the other side of c such
that f(Uk) = f(Ûk). Note that the intervals (zk−1, c) and (c, ẑk−1) are the largest
intervals adjacent to c on which fSk is a diffeomorphism.

If f has no periodic attractor, then zk → c. If there is a b-periodic attractor and
B is the component of its basin of attraction containing c, then zk → ∂B. In fact,
if f has a neutrally attracting periodic orbit (at a saddle node bifurcation), then
∂B contains a point of this orbit, and zk converges to ∂B in a polynomial way (the
precise rate of convergence depends on degeneracy of the neutral periodic orbit).

In [2] this phenomenon is exploited by creating a cascade of almost saddle node
bifurcations; there is an infinite sequence of integers bn and a map f created as the
limit of a sequence of maps fn, where fn has a bn-periodic orbit at a saddle node
bifurcation. While perturbing fn to fn+1, the geometric properties of the sequence
(zk) is preserved to some extent. In the example constructed in [2], the geometry
of (zk) is such that |zk − zk+1| decreases polynomially for values of k associated to
almost saddle node bifurcations, and |zk − zk+1| decreases exponentially for other
values of k. One can construct examples where the first behaviour dominates, so
that the following properties hold:

(1) 1 ≤ Sk − Sk−1 ≤ 2 for all k ≥ 1; hence k < Sk ≤ 2k for k ≥ 1.
(2) The distances |fSk(c) − fSk(zk+1)|, |fSk(zk+1) − fSk(zk)| and |fSk(zk) −

fSk(zk−1)| are bounded away from 0, uniformly in k. Using the Koebe
Principle [12], we conclude that the distortion of fSk |Uk and fSk |Ûk is
uniformly bounded.

(3) limk
1
k log |zk − zk+1|−1 = 0.

Construct the induced map F by F |Uk∪Ûk = fSk . It is easy to verify from property
(1) that F (Uk) = F (Ûk) = (z0, c), (z1, c), (c, ẑ0) or (c, ẑ1). Hence F is a Markov
map. For any x, write χn(x) = k if Fn(x) ∈ Uk ∩ Ûk. Also, let tn =

∑n−1
i=0 Sχi(x),

so xn := Fn(x) = f tn(x). Because of the Markov properties of F , there are points
x such that χn(x) → ∞ so slowly that tn+1−tn

tn
→ 0. Therefore

1
tn

log |Df tn(x)| =
1
tn

log
n−1∏
i=0

|DfSχi (xi)|

=
∑n−1

i=0 log |DfSχi (xi)|∑n−1
i=0 Sχi

∼ K
∑n−1

i=0 log |zχi
− zχi+1|−1

∑n−1
i=0 χi

→ 0,

by property (3). Here K depends only on the image-length and distortion of the
branches of F , which are uniform by property (2). Finally, for intermediate values
of t, i.e. tn ≤ t < tn+1, we have

Lt−tn+1 |Df tn+1(x)| ≤ |Df t(x)| ≤ Lt−tn |Df tn(x)|

for L = sup |Df | < ∞. By the assumption that tn+1−tn

tn
→ 0, we obtain

lim
t

1
t

log |Df t(x)| = 0

as well. This concludes the proof. �
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