A note on the stability of local zeta functions
HTML articles powered by AMS MathViewer
- by Dimiter Vassilev
- Proc. Amer. Math. Soc. 134 (2006), 81-91
- DOI: https://doi.org/10.1090/S0002-9939-05-08117-7
- Published electronically: June 14, 2005
- PDF | Request permission
Abstract:
We show the existence of an interval of stability under small perturbations of local zeta functions corresponding to non-trivial local solutions of an elliptic equation with Lipschitz coefficients. Résumé. Nous démontrons l’existence d’un intervalle de stabilité pour la fonction zêta associée à une équation uniformément elliptique du second ordre à coefficients lipschitziens.References
- M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145–150. MR 256156, DOI 10.1002/cpa.3160230202
- Vazgain Avanissian, Cellule d’harmonicité et prolongement analytique complexe, Travaux en Cours. [Works in Progress], Hermann, Paris, 1985 (French). MR 851008
- N. Aronszajn, A. Krzywicki, and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds, Ark. Mat. 4 (1962), 417–453 (1962). MR 140031, DOI 10.1007/BF02591624
- I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26–40. MR 0320735
- I. N. Bernšteĭn and S. I. Gel′fand, Meromorphy of the function $P^{\lambda }$, Funkcional. Anal. i Priložen. 3 (1969), no. 1, 84–85 (Russian). MR 0247457
- J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
- Jean-Michel Bony and Pierre Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math. 17 (1972), 95–105 (French). MR 338541, DOI 10.1007/BF01418934
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Julien Cassaigne and Vincent Maillot, Hauteur des hypersurfaces et fonctions zêta d’Igusa, J. Number Theory 83 (2000), no. 2, 226–255 (French, with French summary). MR 1772614, DOI 10.1006/jnth.1999.2490
- Jean-Pierre Demailly and János Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525–556 (English, with English and French summaries). MR 1852009, DOI 10.1016/S0012-9593(01)01069-2
- Dmitry Khavinson and Harold S. Shapiro, The Vekua hull of a plane domain, Complex Variables Theory Appl. 14 (1990), no. 1-4, 117–128. MR 1048711, DOI 10.1080/17476939008814410
- Peter Ebenfelt, Holomorphic extension of solutions of elliptic partial differential equations and a complex Huygens’ principle, J. London Math. Soc. (2) 55 (1997), no. 1, 87–104. MR 1423288, DOI 10.1112/S0024610796004656
- Nicola Garofalo and Paul B. Garrett, $A_p$-weight properties of real analytic functions in $\textbf {R}^n$, Proc. Amer. Math. Soc. 96 (1986), no. 4, 636–642. MR 826494, DOI 10.1090/S0002-9939-1986-0826494-8
- Nicola Garofalo and Fang-Hua Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268. MR 833393, DOI 10.1512/iumj.1986.35.35015
- Nicola Garofalo and Fang-Hua Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), no. 3, 347–366. MR 882069, DOI 10.1002/cpa.3160400305
- N. Garofalo, D. Vassilev, Strong unique continuation of solutions of equations involving generalized Baouendi-Grushin operators, preprint 2003, http://comp.uark.edu/˜dvassil/papers.html
- Igor Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J. 91 (1998), no. 2, 225–240. MR 1600578, DOI 10.1215/S0012-7094-98-09111-6
- Masaki Kashiwara, $B$-functions and holonomic systems. Rationality of roots of $B$-functions, Invent. Math. 38 (1976/77), no. 1, 33–53. MR 430304, DOI 10.1007/BF01390168
- B. Malgrange, Sur les polynômes de I. N. Bernstein, Séminaire Goulaouic-Schwartz 1973–1974: Équations aux dérivées partielles et analyse fonctionnelle, École Polytech., Centre de Math., Paris, 1974, pp. Exp. No. 20, 10 (French). MR 0409883
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269, DOI 10.2307/1971429
- D. H. Phong and Jacob Sturm, Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. (2) 152 (2000), no. 1, 277–329. MR 1792297, DOI 10.2307/2661384
- D. H. Phong and Jacob Sturm, On the algebraic constructibility of varieties of integrable rational functions on $\textbf {C}^n$, Math. Ann. 323 (2002), no. 3, 453–484. MR 1923693, DOI 10.1007/s002080100310
- D. H. Phong, E. M. Stein, and J. A. Sturm, On the growth and stability of real-analytic functions, Amer. J. Math. 121 (1999), no. 3, 519–554. MR 1738409, DOI 10.1353/ajm.1999.0023
- Fulvio Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179–194. MR 890662, DOI 10.1016/0022-1236(87)90064-4
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- A. N. Varčenko, Newton polyhedra and estimates of oscillatory integrals, Funkcional. Anal. i Priložen. 10 (1976), no. 3, 13–38 (Russian). MR 0422257
Bibliographic Information
- Dimiter Vassilev
- Affiliation: CRM/ISM - UQAM, C.P. 8888, succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8 – and – Mathematical Science Department, University of Arkansas, Fayetteville, Arkansas 72703
- Email: vassilev@math.uqam.ca
- Received by editor(s): September 2, 2004
- Published electronically: June 14, 2005
- Communicated by: Andreas Seeger
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 81-91
- MSC (2000): Primary 11S40
- DOI: https://doi.org/10.1090/S0002-9939-05-08117-7
- MathSciNet review: 2170546