## Stanley’s theorem on codimension 3 Gorenstein $h$-vectors

HTML articles powered by AMS MathViewer

- by Fabrizio Zanello
- Proc. Amer. Math. Soc.
**134**(2006), 5-8 - DOI: https://doi.org/10.1090/S0002-9939-05-08276-6
- Published electronically: August 11, 2005
- PDF | Request permission

## Abstract:

In this note we supply an elementary proof of the following well-known theorem of R. Stanley: the $h$-vectors of Gorenstein algebras of codimension 3 are SI-sequences, i.e. are symmetric and the first difference of their first half is an $O$-sequence.## References

- David Bernstein and Anthony Iarrobino,
*A nonunimodal graded Gorenstein Artin algebra in codimension five*, Comm. Algebra**20**(1992), no. 8, 2323–2336. MR**1172667**, DOI 10.1080/00927879208824466 - Mats Boij,
*Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys*, Comm. Algebra**23**(1995), no. 1, 97–103. MR**1311776**, DOI 10.1080/00927879508825208 - Mats Boij and Dan Laksov,
*Nonunimodality of graded Gorenstein Artin algebras*, Proc. Amer. Math. Soc.**120**(1994), no. 4, 1083–1092. MR**1227512**, DOI 10.1090/S0002-9939-1994-1227512-2 - Winfried Bruns and Jürgen Herzog,
*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956** - David A. Buchsbaum and David Eisenbud,
*Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$*, Amer. J. Math.**99**(1977), no. 3, 447–485. MR**453723**, DOI 10.2307/2373926 - Y.H. Cho and A. Iarrobino:
*Inverse systems of zero-dimensional schemes in $\textbf {P}^n$*, J. of Algebra, to appear. - Tadahito Harima,
*Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property*, Proc. Amer. Math. Soc.**123**(1995), no. 12, 3631–3638. MR**1307527**, DOI 10.1090/S0002-9939-1995-1307527-7 - A. Iarrobino and H. Srinivasan:
*Some Gorenstein Artin algebras of embedding dimension four, I: components of $PGOR(H)$ for $H=(1,4,7,...,1)$*, J. of Pure and Applied Algebra, to appear. - F. S. Macaulay,
*The algebraic theory of modular systems*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916 original; With an introduction by Paul Roberts. MR**1281612** - J. Migliore and U. Nagel,
*Reduced arithmetically Gorenstein schemes and simplicial polytopes with maximal Betti numbers*, Adv. Math.**180**(2003), no. 1, 1–63. MR**2019214**, DOI 10.1016/S0001-8708(02)00079-8 - Richard P. Stanley,
*Hilbert functions of graded algebras*, Advances in Math.**28**(1978), no. 1, 57–83. MR**485835**, DOI 10.1016/0001-8708(78)90045-2 - Richard P. Stanley,
*Combinatorics and commutative algebra*, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR**1453579**

## Bibliographic Information

**Fabrizio Zanello**- Affiliation: Dipartimento di Matematica, Università di Genova, Genova, Italy
- MR Author ID: 721303
- Email: zanello@dima.unige.it
- Received by editor(s): June 19, 2004
- Published electronically: August 11, 2005
- Communicated by: Bernd Ulrich
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**134**(2006), 5-8 - MSC (2000): Primary 13E10; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-05-08276-6
- MathSciNet review: 2170536