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UNIVERSAL APPROXIMATION OF SYMMETRIZATIONS
BY POLARIZATIONS

JEAN VAN SCHAFTINGEN

(Communicated by David S. Tartakoff)

Abstract. Any symmetrization (Schwarz, Steiner, cap or increasing rear-
rangement) can be approximated by a universal sequence of polarizations
which converges in Lp norm for any admissible function in Lp for 1 ≤ p < +∞
and uniformly for admissible continuous functions. A new Pólya-Szegö in-
equality is proved for the increasing rearrangement.

1. Introduction

A symmetrization ∗ (or rearrangement) maps any function u : Ω → R to a more
symmetrical function u∗ : Ω∗ → R. Under some technical assumptions, it has the
following properties: ∫

Ω

f(u) dx =
∫

Ω∗
f(u∗) dx,(C) ∫

Ω∗
|u∗ − v∗|p dx ≤

∫
Ω

|u − v|p dx,(HL) ∫
Ω

|∇u|p dx ≤
∫

Ω∗
|∇u∗|p dx.(PS)

Rearrangements are used to prove the symmetry and the existence of solutions of
some variational problems.

The symmetrization is defined for sets before being extended to functions. The
inequalities (C) and (HL) are straightforward consequences of the preservation of
the inclusions and of the measure of sets by the rearrangement of sets. Pólya-Szegö’s
inequality (PS) involves the gradient, and a proof that directly uses the definition
form rearrangement of sets relies on an isoperimetric inequality for sets and on
the coarea formula. The inequality (PS) can also be proved by approximation by
polarizations, as Brock and Solynin did [5] and as we do in Corollary 6.3. Lieb
and Loss [8] and Baernstein [3] deduced it from Riesz-like inequalities that they
obtained by approximation.

The first approximation of symmetrizations by simpler symmetrizations ap-
peared in the proof of the classical isoperimetric theorem. A well-chosen sequence
of Steiner symmetrization of a convex body converges with respect to the Haus-
dorff distance to a ball of the same volume. Mani-Levitska proved that random
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sequences of Steiner symmetrizations converge [9]. Brascamp, Lieb and Luttinger
approximated in measure the Schwarz symmetrization of sets by lower order sym-
metrizations in order to prove a generalized Riesz rearrangement inequality [4, 8].
Sarvas approximated the symmetrization of sets by spherical cap and Steiner sym-
metrizations [11], while Baernstein [3], Brock and Solynin used polarizations [5].
This result was extended to the cap symmetrization by Smets and Willem [12].

For all the methods of approximations of symmetrizations by polarizations cited
above, the sequence of polarizations depends of the function that has to be sym-
metrized. Our main result (Theorem 4.4) is that there exists a sequence that
does not depend on the function or on the function space, and that the increasing
rearrangement can also be approximated by polarizations. This symmetrization co-
incides in the one-dimensional case, with the rearrangement introduced by Carbou
[6] and studied by Alberti [1]. The increasing rearrangement inequalities allow us
to prove the existence of solutions of variational problems that increase in some di-
rection. Badiale obtained with the moving plane method similar results concerning
the monotonicity of solutions to some elliptic systems [2].

By the same method, we prove that cap and Steiner symmetrizations approx-
imate higher-order Steiner and cap symmetrization. The approximating sym-
metrizations can be of any order, but they must be compatible with the sym-
metrization that they approximate.

The definitions and basic properties of symmetrizations (section 2) and of po-
larizations (section 3) are recalled. Section 4 is devoted to the proof of the main
result. Finally the method is briefly extended to approximation by symmetrization
(section 5), and a Pólya-Szegö inequality is proven (section 6).

2. Symmetrizations

Lebesgue’s outer on R
N is denoted by LN , Hausdorff’s k-dimensional outer mea-

sure on R
N by Hk, the scalar product between x and y by x · y, and the Euclidean

norm by |x| =
√

x · x. If x ∈ R
N , 0 ≤ r ≤ +∞, then

B(p, r) =
{
x ∈ R

N | |x − p| < r
}

.

The characteristic function of a set A is denoted by χA, and the symmetric difference
of the sets A and B is denoted by A ∆ B = (A \ B) ∪ (B \ A).

Definition 2.1. If T is a proper affine subspace of R
N , the Steiner symmetrization

of a set A ⊂ R
N with respect to T is the unique set AT for which the following

holds: for any p ∈ T , if L is the maximal affine subspace orthogonal to T that
contains p, then

AT ∩ L = B(p, r) ∩ L,

where r is defined such that HN−dim T (B(p, r) ∩ L) = HN−dim T (A ∩ L).

Remark 2.2. The Schwarz symmetrization with respect to p ∈ R
N is the Steiner

symmetrization with respect to {p}; it is also sometimes the Steiner symmetrization
with respect to a straight line [8, 10].

Definition 2.3. A set S ⊂ R
N is a closed half affine subspace of R

N if it is a closed
affine halfspace with respect to its affine span. The boundary of S with respect to
its affine span is denoted ∂S and its dimension is dimS = dim ∂S + 1.
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Definition 2.4. If S is a closed half affine subspace R
N and 0 < dimS < N , the

cap symmetrization of a set A with respect to S is the unique set AS for which the
following holds: AS ∩ ∂S = A ∩ ∂S and, for any q ∈ ∂S and any s > 0, if L is the
maximal affine subspace orthogonal to ∂S that contains q, and p is the only point
in the intersection S ∩ (L ∩ ∂B(q, s)), then

AS ∩ (L ∩ ∂B(q, s)) = B(p, r) ∩ (L ∩ ∂B(q, s)),

where 0 ≤ r ≤ +∞ is defined by

HN−dim S(B(p, r) ∩ (L ∩ ∂B(q, s))) = HN−dim S(A ∩ (L ∩ ∂B(q, s))).

Definition 2.5. Let A ⊆ R
N and v ∈ R

N ∩ ∂B(0, 1),

cv(A) = H1({x ∈ A | v · x > 0}) −H1(
{
x ∈ R

N \ A | v · x ≤ 0
}
)

if the formula has sense and cv(A) = −∞ otherwise.

Definition 2.6. The increasing rearrangement of A ⊂ R
N with respect to v ∈

R
N ∩ ∂B(0, 1) is the unique set A(v,∞) such that for any x ∈ R

N ,

(x + vR) ∩ A(v,∞) = {y ∈ (x + vR) | v · y > cv(A ∩ (x + vR))} .

In the sequel, ∗ indifferently denotes a Steiner or cap symmetrization, or an
increasing rearrangement.

For any sets A, B ⊆ R
N ,

(2.1) A ⊆ B =⇒ A∗ ⊆ B∗.

Proposition 2.7. If A ⊂ R
N is measurable, then A∗ is measurable.

Proof. If ∗ is the increasing rearrangement with respect to v ∈ R
N ∩ ∂B(0, 1), A∗

can be written by definition as

A∗ =
{
x ∈ R

N | v · x > c(A ∩ (x + vR))
}

.

Fubini’s theorem implies that the function x 
→ cv(A ∩ (x + vR)) is measurable.
Hence A∗ is measurable. The proof is similar for the Steiner and cap symmetriza-
tions. �
Definition 2.8. A set A is admissible for a Steiner or cap symmetrization ∗ if A is
measurable, and LN (A) < +∞. If ∗ is the increasing rearrangement with respect
to v, A is admissible if and only if

LN (A ∆
{
x ∈ R

N | v · x > 0
}
) < ∞.

If A ⊂ B ⊂ R
N are admissible sets, then

(2.2) LN (B∗ \ A∗) = LN (B \ A).

When the sets A and B may have infinite measure, which is the case for the increas-
ing rearrangement, the second condition is more restrictive than the preservation
of the measure of sets (LN (A) = LN (A∗)). If A, B ⊂ R

N are admissible sets, then

(2.3) LN (B∗ \ A∗) ≤ LN (B \ A).

Notation 2.9. For any function u : Ω → R and c ∈ R, we write

{u > c} = {x ∈ Ω | u(x) > c} .

Definition 2.10. The symmetrization of a function u : R
N → R is, for y ∈ R

N ,

u∗(y) = sup {c ∈ R | y ∈ {u > c}∗} .
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Proposition 2.11. If ∗ is a rearrangement and u : R
N → R is measurable, then

u∗ is measurable.

Proof. Since ∗ is monotone on sets, {u∗ > c} =
⋃

n≥1{u > c + 1/n}∗, and the
conclusion comes from Proposition 2.7. �
Definition 2.12. A function u : Ω → R is admissible if for any ess inf u < c <
ess sup u, {u > c} is admissible.

Definition 2.13. If ∗ is a Steiner or cap symmetrization, if 1 ≤ p < +∞, let
Lp
∗(RN ) = Lp

+(RN ) be the set of nonnegative functions of Lp(RN ), let C∗(RN ) =
C0,+(RN ) be the set of nonnegative continuous functions whose limit at the infinity
is 0, and let K∗(RN ) = K+(RN ) be the set of nonnegative continuous functions
with compact support. If ∗ is the increasing rearrangement with respect to v ∈
R

N ∩ ∂B(0, 1), let

Lp
∗(R

N ) ={u : R
N → [0, 1] | ∃h : R → R such that h is increasing,

(h − χR+) ∈ Lp(R), and (h(v · .) − u) ∈ Lp(RN )},
C∗(RN ) ={u : R

N → [0, 1] | u is continuous,

lim
v·x→−∞

u(x) = 0, and lim
v·x→+∞

u(x) = 1},

and

K∗(RN ) = {u ∈ C∗(RN ) | ∃h : R → R such that h is increasing,

(h − χ
R+) has compact support, and (h(v · .) − u) ∈ K(RN )}.

The functions of the sets K∗(RN ), C∗(RN ), and Lp
∗(RN ) are all admissible. If

u ∈ K∗(RN ), then u∗ ∈ K∗(RN ) and, for any c ∈ R,

(2.4) {u > c}∗ = {u∗ > c}.
The preservation of inclusions (2.1) and measure (2.2) imply that the sym-

metrization of functions is nonexpansive for any Lp norm, 1 ≤ p ≤ ∞. The ideas
of Crowe, Zweibel and Rosenbloom [7], and of Alberti [1] can be generalized to
embrace the case of the increasing rearrangement.

Proposition 2.14. For any 1 ≤ p ≤ ∞, we have

‖u∗ − v∗‖p ≤ ‖u − v‖p.

Proof. If 1 ≤ p < ∞, for any admissible functions u and v, we have∫
Ω

|u − v|p dx =
∫

σ≤τ

(
LN ({v > τ} \ {u > σ})

+ LN ({u > τ} \ {v > σ})
)
p(p − 1)|σ − τ |p−2 dσ dτ.

The properties (2.4) and (2.3) bring the conclusion. If p = ∞, the conclusion follows
from the preservation of inclusions. �

3. Polarizations

Definition 3.1. A polarizer is a closed affine halfspace of R
N .

Remark 3.2. A set H is a polarizer if and only if there exists a ∈ R
N , |a| = 1 and

b ∈ R
N such that H =

{
x ∈ R

N | a · x ≥ b
}
.
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Notation 3.3. If x ∈ R
N and H ⊆ R

N is a polarizer, xH denotes the reflection of
x with respect to ∂H. Using the description of Remark 3.2, xH = x− 2(a · x− b)a.

Definition 3.4. The polarization of a function u : R
N → R by a polarizer H is

the function uH : R
N → R, defined by

uH(x) =

{
max {u(x), u(xH)} if x ∈ H,

min {u(x), u(xH)} if x �∈ H.

Remark 3.5. The polarization is also called two-point rearrangement. The polar-
ization by H is the natural extension of the cap symmetrization with respect to
S = H when dim S = N (compare with Definition 2.4).

Notation 3.6. If T is an affine subspace, let

HT =
{
H ⊂ R

N | H is a polarizer, and T ⊂ H
}

,

if S is a closed half affine subspace, let

HS =
{
H ⊂ R

N | H is a polarizer, S ⊂ H, and ∂S ⊂ ∂H
}

and, if v ∈ R
N ∩ ∂B(0, 1), let

H(v,∞) =
{
H⊂R

N |H is a polarizer, and a = v in the description of Remark 3.2
}

.

For any symmetrization ∗, and for any function u : R
N → R,

u = u∗ ⇐⇒ ∀H ∈ H∗, u = uH .

Polarizations satisfy the properties (2.1) and (2.2). Thus they are nonexpansive.
For u ∈ Lp

∗(RN ) and H ∈ H∗, the inequality

‖uH − u∗‖p = ‖uH − (u∗)H‖p ≤ ‖u − u∗‖p

suggests that well-chosen polarization can approximate the symmetrization ∗ for a
given function. The proof goes in two steps: first the relative compactness of any
sequence of iterated polarizations is established (Lemma 3.7), then a convergence
condition ensures the convergence to the symmetrized function (Lemma 3.9).

Lemma 3.7. Let u ∈ K∗(RN ) and (Hm)m≥0 ⊂ H∗ be a sequence of polarizers. Let
um = uH1···Hm . Then, there is v ∈ K∗(RN ) and an increasing sequence (mk)k∈N

in
N such that, for any 1 ≤ p ≤ ∞,

lim
k→∞

‖v − umk
‖p = 0.

Remark 3.8. This lemma is essentially due to Brock and Solynin [5, lemmas 6.1
and 6.2], and the main part of the arguments was given by Baernstein [3]. Smets
and Willem proved it for the cap symmetrization [12].

Proof. The compactness of the sequence (um)m≥1 is proven by Ascoli-Arzelá’s the-
orem. The sequence is equibounded: for any polarization H, ‖uH‖∞ = ‖u‖∞ and
thus, by induction, ‖um‖∞ = ‖u‖∞ < +∞.

Second, the sequence is equicontinuous. Let

ωv(δ) = sup {v(x) − v(y) | d(x, y) ≤ δ}
be the modulus of continuity of a function v. By a tedious analysis of the possible
different cases, it can be proved that for any polarization H, ωuH ≤ ωu, and thus,
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by induction, ωum
≤ ωu. Since u ∈ K∗(RN ) is uniformly continuous, the sequence

is equicontinuous.
It remains to prove that the supports are uniformly bounded. For the Steiner or

the cap symmetrizations, u ∈ K∗(RN ) implies that, for some p in T or in ∂S, and
for some R > 0, {u > 0} ⊆ B(p, R). Thus, because polarizations are monotone,
{uH > 0} ⊆ B(p, R)H = B(p, R) and, by induction, {um > 0} ⊆ B(p, R).

For the increasing rearrangement with respect to v, we have, for some c ∈ R,

{u > 0} ⊆
{
x ∈ R

N | v · x > c
}

and

{uH > 0} ⊆
{
x ∈ R

N | v · x > c
}H

=
{
x ∈ R

N | v · x > c
}

.

Therefore we have

{um > 0} ⊆
{
x ∈ R

N | v · x > c
}

and similarly there exists d ∈ R such that{
x ∈ R

N | v · x > d
}
⊆ {um < 1}.

There exists R > 0 such that um(x) �= h(x) implies dist(x, x+vR) ≤ R. Therefore,
there is a bounded set B ⊂ R

N such that supp (um − h) ⊂ B for m ∈ N.
We conclude, by Arzela-Ascoli’s theorem, that any subsequence has a subsequence
converging uniformly to some v ∈ K∗(RN ).

The convergence for 1 ≤ p < +∞ follows from the convergence for p = +∞ and
from the fact that all the supports of the functions of the sequence (um − v) lie in
the same compact set. �

A second lemma states that for any nonsymmetrical function, there exist a po-
larizer H ∈ H∗ that brings it closer to its symmetrization.

Lemma 3.9. Let u ∈ K∗(RN ). If u �= u∗, then there is a polarizer H ∈ H∗ such
that, for any 1 ≤ p < +∞,

‖uH − u∗‖p < ‖u − u∗‖p.

Remark 3.10. This lemma is due to Brock and Solynin [5] for the Steiner sym-
metrization and to Smets and Willem [12] for the cap symmetrization.

Proof. Since u �= u∗, there exists c > 0 such that the set {u > c}∆ {u∗ > c} is not
empty. Choose a point y ∈ {u∗ > c} \ {u > c}. There is a polarizer H ∈ H∗ such
that yH ∈ {u > c} \ {u∗ > c}. In a sufficiently small neighborhood N ⊂ H of y, we
then have

uH(x) = u(xH) > c ≥ u∗(xH) and u∗(x) > c ≥ u(x) = uH(xH),

whence, for p ≥ 1,

|u(x) − u∗(x)|p + |u(xH) − u∗(xH)|p > |uH(x) − u∗(x)|p + |uH(x) − u∗(xH)|p.

If x ∈ N , the corresponding nonstrict inequality holds. The integral inequality is
obtained by integration of the preceding inequality over N and of the nonstrict
inequality on H \ N . �
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4. Approximation by polarizations

We first establish the convergence of a sequence of polarizations for a single
function.

Lemma 4.1. Let u ∈ K∗(RN ), 0 < κ < 1, (mk)k≥1 ⊂ N be an increasing sequence
of indices, and a sequence of polarizers (Hm)m≥1 ⊂ H∗ such that for all k ∈ N,

(4.1) ‖umk
− u∗‖1 − ‖umk

Hmk − u∗‖1 ≥ κ sup
H∈H∗

(
‖umk

− u∗‖1 − ‖umk

H − u∗‖1

)
.

Then the sequence um = uH1...Hm converges to u∗ for any 1 ≤ p ≤ +∞.

Remark 4.2. For any function u ∈ K∗(RN ), a sequence of polarizers verifying
condition (4.1) can be constructed.

Remark 4.3. We use the same strategy of proof as that of Smets and Willem [12],
except that the inequality (4.1) is weaker than imposing (Hm) to be optimal as
done in [12].

Proof. By Lemma 3.7, there exist a subsequence um′
k

of (umk
)k≥1 that converges

to v ∈ K∗ for any Lp norm. Since the rearrangement ∗ is nonexpansive,

‖u∗ − v∗‖p = lim
k→∞

‖um′
k

∗ − v∗‖p ≤ lim
k→∞

‖um′
k
− v‖p = 0,

and v∗ = u∗. For any polarizer H ∈ H∗, we then have, by the nonexpansiveness of
polarizations and by equation (4.1),

‖um′
k+1

− u∗‖1 ≤ ‖um′
k+1 − u∗‖1

≤ ‖um′
k
− u∗‖1 + κ(‖um′

k

H − u∗‖1 − ‖um′
k
− u∗‖1)

= (1 − κ)‖um′
k
− u∗‖1 + κ‖um′

k

H − u∗‖1 ≤ ‖um′
k
− u∗‖1.

Passing to the limit, we obtain

‖v − u∗‖1 ≤ (1 − κ)‖v − u∗‖1 + κ‖vH − u∗‖1 ≤ ‖v − u∗‖1,

whence, since u∗ = v∗, ‖v − v∗‖1 = ‖vH − v∗‖1, which is absurd if v �= u∗ By
Lemma 3.9. Therefore the subsequence (um′

k
)k∈N converges to u∗ for any Lp norm.

The nonexpansiveness of polarizations allows us to conclude that

lim
k→∞

‖uk − u∗‖p ≤ lim
k→∞

‖um′
k
− u∗‖p = 0. �

Theorem 4.4. For any symmetrization ∗, there exist a sequence of polarizers
(Hm)m≥0 ⊂ H∗ such that, for any 1 ≤ p < ∞, if u ∈ Lp

∗(RN ), the sequence

um = uH1···Hm

converges to u∗:
lim

m→∞
‖um − u∗‖p = 0.

If u ∈ C∗(RN ), the sequence converges for p = ∞.

Proof of Theorem 4.4. If ∗ is a Steiner or spherical cap symmetrization, first note
that there is a countable set N ⊂ K∗(RN ) dense in Lp

∗(RN ) and in C∗(RN ) (see
[13]). Choose a sequence (Hm) for which (4.1) holds for all u ∈ N . The sequence
of iterated polarizations approaches the symmetrization for any u ∈ N .
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Let u ∈ Lp
∗(RN ) and ε > 0. By density, there is v ∈ N such that ‖u− v‖p ≤ ε/3.

By contraction, for m sufficiently large, if vm = vH1···Hn ,

‖um −u∗‖p ≤ ‖um −vm‖p +‖vm −v∗‖p +‖v∗−u∗‖p ≤ 2‖u−v‖p +‖vm −v∗‖p ≤ ε.

If ∗ is the increasing rearrangement with respect to v, and h : R → [0, 1] is a
continuous function such that supp (h−χ

R+) is compact, then the same reasoning
shows the convergence for any w ∈ Lp

∗(RN ) ∩ (h(v · .) + Lp(RN )). Let u ∈ Lp
∗(RN )

and
CR =

{
x ∈ R

N | |(v · x)v − x| ≤ R
}

.

Consider the function uR which is equal to u on CR and equal to h outside of it.
Then uR ∈ Lp

∗(RN ) ∩ (h(v · .) + Lp(RN )), and thus
∫

CR
|um − u∗|p dx → 0. Since∫

RN\CR

|um − u∗|p dx ≤ 2
∫

RN\CR

|u − h|p dx,

um → u∗ follows.
The proof is similar for u ∈ C∗(RN ). �

Remark 4.5. Theorem 4.4 implies that the symmetrization of any set can be ap-
proximated in measure and in Hausdorff distance [5, Lemma 7.2]. Conversely, if the
symmetrization of any set can be approximated in measure by some fixed sequence
of polarizations, then Theorem 4.4 follows by the approximation of functions in
Lp(RN ) by simple functions.

5. Approximation by symmetrizations

The method of proof of Theorem 4.4 can be extended to approximation of Steiner
or symmetrizations by lower order Steiner or cap symmetrizations.

Definition 5.1. Let T be an affine subspace. A set of affine subspaces T approx-
imates T if, for any T ′ ∈ T , T ⊂ T ′, and for any affine subspace T ′′ ⊂ R

N of
codimension 1 such that T ⊂ T ′′, there exists T ′ ∈ T such that T ′ ⊂ T ′′.

Theorem 5.2. Let T be an affine subspace of R
N and let T be a set of affine

subspaces. If T approximates T , there is a sequence (Tm)m≥1 in T such that
uT1···Tm → uT for u ∈ Lp

+(RN ) or u ∈ C0(RN ).

Definition 5.3. Let T be an affine subspace. A set S of closed half affine subspaces
of R

N approximates T if, for any S′ ∈ S, T ⊂ S′, and for any affine subspace
T ′′ ⊂ R

N of codimension 1 which is parallel to T , there exists S′ ∈ S such that
∂S′ ⊂ T ′′.

Example 5.4. If T = {T}, then T trivially approximates T . If T = {0}, the set
of polarizers HT and the set of closed halflines containing 0 both approximate T .

Definition 5.5. Let S be a closed half affine subspace. A set S of closed half affine
subspaces of R

N approximates S if, for any S′ ∈ S, S ⊂ S′ and ∂S ⊂ S′, and for
any affine subspace T ′′ ⊂ R

N of codimension 1 which is parallel to T , there exists
S′ ∈ S such that ∂S′ ⊂ T ′′.

Theorem 5.6. Let T be an affine subspace of R
N (resp. let S be a half affine

subspace of R
N ) and let S be a set of closed half affine subspaces of R

N . If S
approximates T (resp. S), then there exists a sequence (Sm)m≥1 in S such that
uS1···Sm → uT (resp. uS1···Sm → uS) for u ∈ Lp

+(RN ) or u ∈ C0(RN ).
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Proof. The proofs of Theorems 5.2 and 5.6 are similar. The proof is essentially the
same as the proof of Theorem 4.4. The modifications in the lemmas are sketched
for a closed half affine subspace S in Theorem 5.6. Suppose u ∈ K+(RN ). It is
clear that for any S′ ∈ S, uSS′

= uS and ‖uS′ − uS‖p ≤ ‖u − uS‖p. Therefore the
sequence ‖uS1...Sn − uS‖p is nonincreasing. Theorem 4.4 implies that the modulus
of continuity decreases along the sequence. This allows us to prove an analogue to
Lemma 3.7. An analogue of Lemma 3.9 is also needed. Suppose u �= uS . Then
by Lemma 3.9 there exists H ∈ HS such that ‖uH − uS‖p < ‖u − uS‖p. Since
∂H is parallel to ∂S and S approximates S, there exists S′ such that S′ ⊂ H and
∂S′ ⊂ ∂H ′. Hence uHS′

= uS′
and

‖uS′ − uS‖p ≤ ‖uH − uS‖p < ‖u − uS‖p.

The remainder of the proof is the same as the proof of Lemma 4.1 and of Theorem
4.4. �

6. Pólya-Szegö’s inequality

Definition 6.1. A set Ω is totally invariant with respect to a symmetrization ∗ if
for any H ∈ H∗, Ω is invariant under the reflection with respect to ∂H.

Definition 6.2. If ∗ is a symmetrization, Ω is a totally invariant set and u : Ω → R

is a function, then the symmetrization of u is u∗ = ũ∗|Ω, where ũ is any extension
of u to R

N .

The definition of the symmetrization of u : Ω → R does not depend on the
extension ũ because Ω is totally invariant.

Corollary 6.3. If Ω is a totally invariant open set, ∗ is a Steiner or cap sym-
metrization, u ∈ W1,1

loc(Ω) is admissible, 1 < p < +∞, and ∇u ∈ Lp(Ω), then

(6.1) ‖∇u∗‖p ≤ ‖∇u‖p.

Proof. Suppose first that u ∈ Lp
∗(Ω). Let um be the restrictions to Ω of the sequence

of iterated polarizations of Theorem 4.4 applied to an extension ũ ∈ Lp
∗(RN ) of u

to R
N . For any compactly supported smooth function h ∈ D(Ω)N ,

−
∫

Ω

u∗ div h dx = − lim
m→∞

∫
Ω

um div h dx = lim
m→∞

∫
Ω

∇umh dx

≤ lim inf
m→∞

‖∇um‖p‖h‖p′ = ‖∇u‖p‖h‖p′ ,

since ‖∇uH‖Ω,p = ‖∇u‖Ω,p [5] for any u ∈ W1,1
loc(Ω) such that ∇u ∈ Lp(RN ), and

for any polarizer H. Thus there exist v ∈ Lp(Ω)N that is the weak limit of ∇um

and the weak gradient of u∗.
In general, if ∗ is an increasing rearrangement, for m ≥ 3, let

um(x) =
m

m − 2
min(max(0, u(x) − 1/m), 1 − 2/m).

Since u is admissible, um ∈ L1
∗(Ω). From the first part of the proof, ‖∇um

∗‖p ≤
‖∇um‖p. Since m−2

m |∇um| ↗ |∇u| and m−2
m |∇um

∗| ↗ |∇u∗| almost everywhere,
the conclusion comes from the monotone convergence theorem. The end of the
proof is similar for the Steiner and cap symmetrizations. �
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