Eigenvalues of the Laplacian acting on $p$-forms and metric conformal deformations
HTML articles powered by AMS MathViewer
- by Bruno Colbois and Ahmad El Soufi
- Proc. Amer. Math. Soc. 134 (2006), 715-721
- DOI: https://doi.org/10.1090/S0002-9939-05-08005-6
- Published electronically: July 18, 2005
- PDF | Request permission
Abstract:
Let $(M,g)$ be a compact connected orientable Riemannian manifold of dimension $n\ge 4$ and let $\lambda _{k,p} (g)$ be the $k$-th positive eigenvalue of the Laplacian $\Delta _{g,p}=dd^*+d^*d$ acting on differential forms of degree $p$ on $M$. We prove that the metric $g$ can be conformally deformed to a metric $g’$, having the same volume as $g$, with arbitrarily large $\lambda _{1,p} (g’)$ for all $p\in [2,n-2]$. Note that for the other values of $p$, that is $p=0, 1, n-1$ and $n$, one can deduce from the literature that, $\forall k >0$, the $k$-th eigenvalue $\lambda _{k,p}$ is uniformly bounded on any conformal class of metrics of fixed volume on $M$. For $p=1$, we show that, for any positive integer $N$, there exists a metric $g_{_N}$ conformal to $g$ such that, $\forall k\le N$, $\lambda _{k,1} (g_{_N}) =\lambda _{k,0} (g_{_N})$, that is, the first $N$ eigenforms of $\Delta _{g_{_{N},1}}$ are all exact forms.References
- Jean-Pierre Bourguignon, Peter Li, and Shing-Tung Yau, Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv. 69 (1994), no. 2, 199–207. MR 1282367, DOI 10.1007/BF02564482
- Bruno Colbois and Gilles Courtois, A note on the first nonzero eigenvalue of the Laplacian acting on $p$-forms, Manuscripta Math. 68 (1990), no. 2, 143–160. MR 1063223, DOI 10.1007/BF02568757
- B. Colbois and J. Dodziuk, Riemannian metrics with large $\lambda _1$, Proc. Amer. Math. Soc. 122 (1994), no. 3, 905–906. MR 1213857, DOI 10.1090/S0002-9939-1994-1213857-9
- Bruno Colbois and Ahmad El Soufi, Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’, Ann. Global Anal. Geom. 24 (2003), no. 4, 337–349. MR 2015867, DOI 10.1023/A:1026257431539
- Jozef Dodziuk, Eigenvalues of the Laplacian on forms, Proc. Amer. Math. Soc. 85 (1982), no. 3, 437–443. MR 656119, DOI 10.1090/S0002-9939-1982-0656119-2
- A. El Soufi and S. Ilias, Immersions minimales, première valeur propre du laplacien et volume conforme, Math. Ann. 275 (1986), no. 2, 257–267 (French). MR 854009, DOI 10.1007/BF01458460
- G. Gentile and V. Pagliara, Riemannian metrics with large first eigenvalue on forms of degree $p$, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3855–3858. MR 1277111, DOI 10.1090/S0002-9939-1995-1277111-2
- Pierre Guerini and Alessandro Savo, Eigenvalue and gap estimates for the Laplacian acting on $p$-forms, Trans. Amer. Math. Soc. 356 (2004), no. 1, 319–344. MR 2020035, DOI 10.1090/S0002-9947-03-03336-1
- Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom. 37 (1993), no. 1, 73–93. MR 1198600
- John Lott, Collapsing and the differential form Laplacian: the case of a smooth limit space, Duke Math. J. 114 (2002), no. 2, 267–306. MR 1920190, DOI 10.1215/S0012-7094-02-11424-0
- Jeffrey McGowan, The $p$-spectrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann. 297 (1993), no. 4, 725–745. MR 1245416, DOI 10.1007/BF01459527
- Leonid Polterovich, Symplectic aspects of the first eigenvalue, J. Reine Angew. Math. 502 (1998), 1–17. MR 1647622, DOI 10.1515/crll.1998.089
- S. Tanno, Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectra of Riemannian Manifolds, Kaigai Publications, Tokyo (1983) 115-128.
- Junya Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and $p$-forms, Ann. Global Anal. Geom. 23 (2003), no. 1, 13–27. MR 1952856, DOI 10.1023/A:1021294732338
- Paul C. Yang and Shing Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 1, 55–63. MR 577325
Bibliographic Information
- Bruno Colbois
- Affiliation: Laboratoire de Mathématiques, Université de Neuchâtel, 13 rue E. Argand, 2007 Neuchâtel, Switzerland
- MR Author ID: 50460
- Email: Bruno.Colbois@unine.ch
- Ahmad El Soufi
- Affiliation: Laboratoire de Mathématiques et Physique Théorique, Université de Tours, UMR-CNRS 6083, Parc de Grandmont, 37200 Tours, France
- Email: elsoufi@univ-tours.fr
- Received by editor(s): July 14, 2004
- Received by editor(s) in revised form: October 2, 2004
- Published electronically: July 18, 2005
- Communicated by: Jozef Dodziuk
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 715-721
- MSC (2000): Primary 35P15, 58J50, 53C20
- DOI: https://doi.org/10.1090/S0002-9939-05-08005-6
- MathSciNet review: 2180889