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PROJECTIONS IN OPERATOR RANGES

GUSTAVO CORACH, ALEJANDRA MAESTRIPIERI, AND DEMETRIO STOJANOFF

(Communicated by Joseph A. Ball)

Abstract. If H is a Hilbert space, A is a positive bounded linear operator
on H and S is a closed subspace of H, the relative position between S and
A−1(S⊥) establishes a notion of compatibility. We show that the compatibility
of (A,S) is equivalent to the existence of a convenient orthogonal projection

in the operator range R(A1/2) with its canonical Hilbertian structure.

1. Introduction

Oblique projections are becoming an important tool in several areas of mathe-
matics, statistics and engineering. This phenomenon is illustrated in many papers
on integral equations, iterative methods in numerical linear algebra, signal pro-
cessing, linear regression, just to mention a sample; in [12] the reader can find an
extensive list of papers on these applications. In a recent series of papers [9], [10],
[11], [12] the set of oblique projections is studied according to different inner and
semi-inner products which orthogonalize them. This is the way in which a certain
notion of compatibility arises. A positive (Hermitian semidefinite) operator A on a
Hilbert space H and a closed subspace S of H are said to be compatible if there
exists a projection Q in H with range S such that AQ = Q∗A. This equality means
that (Qx, y)A = (x, Qy)A ∀x, y ∈ H if (u, v)A := 〈Au, v〉 where u, v ∈ H and 〈 , 〉
denotes the inner product on H. Observe that ( , )A is, in general, a semi-inner
product, because A is allowed to have a nontrivial nullspace. If the pair (A,S) is
compatible, then a distinguished element PA,S in

P (A,S) = {Q ∈ L(H) : Q2 = Q, QH = S, AQ = Q∗A}
can be defined with certain optimal properties.

On the other hand, given Hilbert spaces H,K the range of a bounded linear
operator T : H → K can be naturally given a Hilbert space structure, by means of
the inner product 〈Tx, Ty〉T = 〈x1, y1〉, x, y ∈ H, where x1 (resp. y1) denotes the
orthogonal projection of x (resp. y) to the closure of R(T ∗) in H. These Hilbert
spaces B(T ) = (R(T ), 〈 , 〉T ) play a significant role in many areas, in particular in
the de Branges complementation theory. The reader is referred to the books by de
Branges and Rovnyak [7] and Ando [1] for systematic expositions of this theory. A
Krein space version of the theory is given in de Branges [8]. The main goal of this
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paper is to determine the compatibility of a pair (A,S) by checking the existence
of a convenient orthogonal projection in the space B(A1/2) = (R(A1/2), 〈 , 〉A1/2).
This approach allows us to see the oblique projection PA,S as a true orthogonal
projection (acting, of course, on a different Hilbert space, namely B(A1/2)). Let us
describe more precisely these concepts and results. Section 2 collects some notation
and a description of a theorem by R. G. Douglas which is one of the main tools of
this paper. Douglas’ theorem studies the existence and uniqueness of solutions of
operator equations such as AX = B, for operators A, B between Hilbert spaces.
Section 3 starts with a survey of known results on compatibility and on the form of
a distinguished projection PA,S with the properties mentioned above. Some proofs
of these results can be found in [9], [11] and [12]. In addition, we present new
characterizations of compatibility; some of them are quite technical but they will
be needed later, in the sections dealing with operator ranges. Section 4 contains a
description of the Hilbertian structure on an operator range. The main references
are the papers by Dixmier [16], Fillmore and Williams [18] and de Branges [8] (the
last in a Krein space setting), and the books by de Branges and Rovnyak [7] and
Ando [1].

The particular operator range we are interested in is R(A1/2), i.e., the range
of the positive square root of a fixed positive operator A. Moreover, we need to
characterize the closure and the orthogonal complement of a subspace in B(A1/2)
and the algebra of all bounded operators on H which can be extended, after a con-
venient reduction modulo the nullspace N(A) of A, to B(A1/2). In this section we
slightly extend some results by Barnes [4] who studied the case of an injective oper-
ator A; however, Barnes’ goal is different from ours, namely, he studies the spectral
properties of an operator when it is seen in B(A) or in B(A1/2). Finally, Section 5
contains a characterization of the compatibility of a pair (A,S) in terms of certain
decompositions of B(A1/2). Moreover, it is proven that if (A,S) is compatible, then
the distinguished projection PA,S can be extended (in the sense mentioned above)
to B(A1/2), and conversely. Also, it is shown that the orthogonal projection PW
onto a closed subspace W of B(A1/2) comes from an operator on H if and only if
(A,S) is compatible, where S is a closed subspace of H such that A(S) is dense in
W (in the topology of B(A1/2)).

2. Preliminaries

In what follows H and K denote Hilbert spaces, L(H,K) is the Banach space of
bounded linear operators from H to K, L(H) is the algebra L(H,H) and L(H)+

denotes the cone of positive operators on H. For any W ∈ L(H), the range and the
nullspace of W are respectively denoted by R(W ) and N(W ).

In this paper, a projection or an oblique projection on H, is a bounded linear
idempotent of L(H), an orthogonal projection or a Hermitian projection is a pro-
jection such that P ∗ = P (i.e., N(P ) = R(P )⊥). The set of all projections on H
is denoted by Q. Given a closed subspace M of H, PM denotes the orthogonal
projection onto M. If W ∈ L(H,K) has closed range, then the Moore-Penrose
pseudoinverse of W , denoted by W †, belongs to L(K,H) and it is characterized by
the properties WW † = PR(W) and W †W = PR(W∗) (see [13], [5] and [15] for more
properties and applications of W †).

We state the theorem by R. G. Douglas [17], [18] mentioned in the introduction
and which will be used in several parts of the paper.
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Theorem 2.1. Given Hilbert spaces H, K, G and operators A ∈ L(H,G), B ∈
L(K,G), then the following conditions are equivalent:

i) the equation AX = B has a solution in L(K,H);
ii) R(B) ⊆ R(A);
iii) there exists λ > 0 such that BB∗ ≤ λAA∗. In this case, there exists a unique

D ∈ L(K,H) such that AD = B, R(D) ⊆ R(A∗), and N(D) = N(B); moreover,
‖D‖2 = inf{λ > 0 : BB∗ ≤ λAA∗}. We shall call D the reduced solution of
AX = B.

As a consequence of Douglas’ theorem and the properties of the Moore-Penrose
pseudoinverses, it follows that if R(A) is closed and R(B) ⊆ R(A), then A†B is the
reduced solution of AX = B.

3. Oblique projections

Given A ∈ L(H), the functional

( , )A : H×H → C , (x, y)A = 〈Ax, y〉, x, y ∈ H,

is an equivalent inner product on H if and only if A is a positive invertible operator
on H. If A ∈ L(H)+, then ( , )A is a Hermitian sesquilinear form which is positive
semidefinite, i.e., a semi-inner product on H. For a subspace M of H it is easy to
see that

{x ∈ H : (x, y)A = 0 ∀y ∈ M} = (AM)⊥ = A−1(M⊥).

Given W ∈ L(H), an A-adjoint of W is any V ∈ L(H) such that (Wx, y)A =
(x, V y)A, for all x, y ∈ H, i.e., AW = V ∗A. We are interested in projections
Q ∈ Q which are A-Hermitian, in the sense that AQ = Q∗A.

From now on, we fix A ∈ L(H)+ and a closed subspace S of H and abbreviate
P = PS . The first result is due to M. G. Krein [24]. There is a recent proof of it in
[9].

Lemma 3.1 (Krein). Let Q be a projection with R(Q) = S. Then Q is A-Hermitian
if and only if N(Q) ⊆ A−1(S⊥).

Recall from the introduction the set P (A,S) of all A-Hermitian projections with
fixed range S, i.e. P (A,S) = {Q ∈ Q : R(Q) = S and AQ = Q∗A}. The pair
(A,S) is compatible if the set P (A,S) is nonempty.

Observe that it follows from Lemma 3.1 that if a projection Q has range S
then Q ∈ P(A,S) if and only if N(Q) ⊆ A−1(S⊥), so that (A,S) is compatible
if and only if H = S + A−1(S⊥). In this case, H = S ⊕ (A−1(S⊥) 
 N ), where
N = S∩A−1(S⊥) = S∩N(A) and there exists a unique projection PA,S with range
S and nullspace A−1(S⊥) 
N . It is elementary to check that PA,S ∈ P (A,S). At
the end of section 3 we shall mention some optimal properties of PA,S .

Remark 3.2. In [3], Baksalary and Kala studied, in the matrix case, the existence
of PA,S under the additional hypothesis of the invertibility of A. In [20], Hassi and
Nordström determined conditions on a Hermitian not necessarily invertible operator
A, under which the set P (A,S) is a singleton. They also proved some least-square-
type results for indefinite inner products. In [25], Z. Pasternak-Winiarski studied,
for A invertible, the analyticity of the map A → PA,S (see also [2] for shorter proofs
and related results).
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Consider the matrix representation of A in terms of the orthogonal projection
P = PS onto S, namely,

(1) A =
(

a b
b∗ c

)
;

this means that a ∈ L(S), b ∈ L(S⊥,S), c ∈ L(S⊥) and Ax = as + bs⊥ + b∗s + cs⊥

if x = s + s⊥ is the decomposition of x ∈ H = S ⊕ S⊥. If Q ∈ Q and R(Q) = S,
then there exists X ∈ L(S⊥,S) such that the matrix representation of Q in terms
of P is Q =

(
1 X
0 0

)
. It is easy to see that the condition AQ = Q∗A is equivalent to

the equation aX = b. Then (A,S) is compatible if and only if the equation aX = b
admits a solution. Applying Douglas’ theorem, this is equivalent to R(b) ⊆ R(a)
(or R(PA) ⊆ R(PAP )). Consider the reduced solution d of aX = b. It easily
follows that PA,S =

(
1 d
0 0

)
(see [9] for a proof of these facts). Observe that, if A is

invertible, then

PA,S = P
(
PAP + (I − P )A(I − P )

)−1

A.

For many results in the case of invertible A, the reader is referred to [25], [2] and
[9].

Some basic conditions for the compatibility of the pair (A,S) can be found in
[9], [11], [12] as well as formulas for the elements of P (A,S) if (A,S) is compatible.

In what follows we give new characterizations of compatibility; also, we express
the distinguished element PA,S of P (A,S) as the solution of certain Douglas-type
equations.

If S ∩ N(A) = {0}, then the compatibility of (A,S) can be easily checked. In
fact:

Proposition 3.3. Consider A ∈ L(H)+ such that S ∩ N(A) = {0}. Then the
following conditions are equivalent:

i) H = S ⊕ A(S)⊥, i.e., (A,S) is compatible;
ii) A(S) ⊕ S⊥ is closed;
iii) A(S) ⊕ S⊥ = H.

Proof.

i) → ii) We use the general fact that if M,N are closed subspaces, M + N
is closed if and only if M⊥ + N⊥ is closed (see theorem 4.8 of [23]): if
S ⊕A(S)⊥ = H, a fortiori S + A(S)⊥ is closed. Then S⊥ + A(S) is closed.
Besides S⊥ ∩ A(S) = (S + A(S)⊥)⊥ = {0}.

ii) → iii) If S⊥ + A(S) is closed, S⊥ + A(S) = S⊥ + A(S) = (S ∩A(S)⊥)⊥ =
(S ∩ N(A))⊥ = H.

iii) → i) is similar. �

The closure condition of part ii) is equivalent to an angle condition. In fact, the
sum of two closed subspaces is closed if the angle determined by them is nonzero.
The reader is referred to [23], [5], [14], [21] for nice surveys on angles in Hilbert
spaces, and to [9], [12] for particular details concerning compatibility. In particular,
in [12] it is proven that (A,S) is compatible if and only if the angle between S⊥

and the closure of A(S) is nonzero.
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Next, we state a chain of necessary conditions for compatibility.

Proposition 3.4. Consider the following conditions:
(1) The pair (A,S) is compatible.
(2) A(S) is closed in R(A).
(3) A−1(A(S)) = S + N(A).
(4) A1/2(S) is closed in R(A1/2).
(5) S + N(A) is closed.
(6) PR(A)(S) is closed.

Then 1 → 2 → 4 → 5, 2 ↔ 3 and 5 ↔ 6.

Proof.
1 → 2: Observe that (A,S) is compatible if and only if R(A) = A(S) + (S⊥∩R(A)).

Consider z ∈ A(S)∩R(A); then there exists a sequence {sn} in S such that
Asn → z and there exist s ∈ S and y ∈ H such that Ay ∈ S⊥ and
z = As + Ay. Since 〈Asn, w〉 = 0 for every w ∈ A−1(S⊥), then 〈z, w〉 = 0
for every w ∈ A−1(S⊥). Thus, 0 = 〈z, y〉 = 〈s, Ay〉 + 〈Ay, y〉 = 〈Ay, y〉 =
‖A1/2y‖2 and y ∈ N(A). Therefore, z = As ∈ A(S).

2 → 4: Consider z ∈ A1/2(S)∩R(A1/2); then z = A1/2x for some x ∈ H and there
exists a sequence {sn} in S such that A1/2sn → A1/2x ; then Asn → Ax

so that Ax = A1/2z ∈ A(S)∩R(A) = A(S). Then z ∈ (A1/2(S) + N(A))∩
R(A1/2) so that z ∈ A1/2(S).

2 ↔ 3: Observe that A(S) is closed in R(A) if and only if A(S)∩R(A) = A(S); but
this is equivalent to A−1(A(S)) = A−1(A(S)) , i.e., A−1(A(S)) = S+N(A).

4 → 5: It is easy to prove that if A1/2(S) is closed in R(A1/2), then A−1/2(A1/2(S))
= S + N(A), so that S + N(A) is closed.

5 ↔ 6: It is a general result that if M and N are closed subspaces then M+N is
closed if and only if PN⊥(M) is closed (see [23] or [14]). �

In [9] it is shown that all conditions above are equivalent if R(A) is closed. The
next technical result will be used in the following sections.

Corollary 3.5. If S+N(A) is closed, then the following conditions are equivalent:
i) (A,S) is compatible.
ii) (A, PR(A)(S)) is compatible.
iii) (A,W) is compatible, for every subspace W such that PR(A)(W) =

PR(A)(S).

Proof. As proved before, S + N(A) is closed if and only if PR(A)(S) is closed, so
that item ii) makes sense.
i)↔ ii): As S + N(A) = PR(A)(S) ⊕ N(A) then S + A−1(S⊥) = S + N(A) +
A−1(S⊥) = PR(A)(S) ⊕ A−1(S⊥), because N(A) ⊆ A−1(S⊥). Therefore (A,S) is
compatible if and only if (A, PR(A)(S)) is compatible.
ii)↔ iii): Using that i)↔ ii) for S and W , (A, PR(A)(W)) is compatible if and only
if (A, PR(A)(W)) is compatible if and only if (A, PR(A)(S)) is compatible if and only
if (A,S) is compatible. �

Remark 3.6. The pair (A,S) is compatible if and only if A1/2(S) is closed in R(A1/2)
and R(A1/2) = A1/2(S)∩R(A1/2)⊕A1/2(S)⊥∩R(A1/2). This type of decomposition
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will be simplified later. For the proof, observe first that (A,S) is compatible if and
only if H = S + A−1(S⊥). Applying A1/2 to both sides of this equality we get
R(A1/2) = A1/2(S) + A1/2(S)⊥ ∩R(A1/2). From the proposition above, A1/2(S) is
closed in R(A1/2), so that A1/2(S) = A1/2(S) ∩ R(A1/2). The converse is similar.

Corollary 3.7. The following conditions are equivalent:
i) If W = A−1/2(A1/2(S)), then (A,W) is compatible.
ii) R(A1/2) = A1/2(S) ∩ R(A1/2) ⊕ A1/2(S)⊥ ∩ R(A1/2).
iii) There exists a solution Q of A1/2X = PMA1/2, where M = A1/2(S).

Proof.
i) → ii) (A,W) is compatible if and only if H = W + A−1(W⊥); as before, it

follows that R(A1/2) = A1/2(W) + A1/2(W)⊥ ∩ R(A1/2).
Observe that A1/2(W) = A1/2(S) ∩ R(A1/2) and since A1/2(S) ⊆

A1/2(W) ⊆ A1/2(S), we get A1/2(S)⊥ = A1/2(W)⊥. Thus, R(A1/2) =
A1/2(S) ∩ R(A1/2) + A1/2(S)⊥ ∩ R(A1/2).

The converse is similar.
ii) ↔ iii) This is a consequence of Douglas’ theorem. �

Lemma 3.8. If A ∈ L(H)+, then the following conditions are equivalent:
i) R(PSAPS) is closed;
ii) A1/2(S) is closed;
iii) A(S) is closed.

Any of the conditions above implies that the pair (A,S) is compatible. In particular,
if A(S) is finite dimensional, then (A,S) is compatible.

Proof. Denote P = PS . Since A1/2(S) = R(A1/2P ) and PAP = (A1/2P )∗A1/2P ,
we get the equivalence between conditions i) and ii). Suppose that R(PAP ) is
closed. Observe that A(S) = R(AP ) and R(AP ) is closed if and only if R(PA) or
equivalently R(PA2P ) is closed. Note that (PAP )2 ≤ PA2P and

N(PAP )2 = N(PA2P ) = S⊥ ⊕ (S ∩ N(A)).

Since PA2P ≥ (PAP )2 > 0 in (N(PAP )2)⊥ we get that R(PA2P ) is closed. The
converse is similar. We have already proved that if R(PAP ) is closed, then (A,S)
is compatible. �

Remark 3.9. The lemma shows, in particular, that in finite-dimensional Hilbert
spaces, compatibility is automatically satisfied. However, an efficient algorithm for
finding every element of P (A,S) is not known.

Next, we show that PA,S is, modulo the orthogonal projection onto N = N(A)∩
S, a reduced solution of a Douglas-type equation:

Proposition 3.10. If the pair (A,S) is compatible, let M = A1/2(S). Denote
P = PS . Then the reduced solution Q of the equation

(2) (PAP )X = PA

coincides with the reduced solution of

(3) (A1/2P )X = PMA1/2.

Moreover, Q = PA,S�N and PA,S = Q + PN .
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Proof. Let Q be the reduced solution of equation (2). Observe first that N(PAP ) =
N(A1/2P ) = N + S⊥ and, therefore, R(PAP ) = S 
 N . By the definition of the
reduced solution, R(Q) ⊆ R(PAP ) = S 
N and N(Q) = N(PA) = (AS)⊥. If z ∈
S
N , then PAPQz = PAz = PAPz and, since PAP is injective on S
N , we get
Qz = z. Since the pair (A,S) is compatible, it follows that H = (S
N )⊕A−1(S⊥),
so that Q is the projection onto R(Q) = S 
N with

N(Q) = A−1(S⊥) ⊆ A−1((S 
N )⊥) = A−1(R(Q)⊥).

By Krein’s lemma it follows that Q ∈ P (A,S 
 N ). Observe also that (S 
 N ) ∩
N(A) = {0}, so that P (A,S 
 N ) consists of a single element, namely PA,S�N .
Since PN is an A-Hermitian projection onto N , it follows that Q+PN = PA,S�N +
PN = PA,S .

Let us prove that Q = PA,S − PN is the reduced solution of the equation (3).
Note that

(AP )Q = A1/2PMA1/2 = APA,S = APPA,S .

Hence A1/2(PMA1/2 − A1/2PQ) = {0} and R(PMA1/2 − A1/2PQ) ⊆ N(A). But,
also,

R
(
PMA1/2 − A1/2PQ

)
⊆ R(A),

so that PMA1/2 − A1/2PQ = {0}, which says that Q is a solution of (3). In
order to see that Q is the reduced solution, observe that N(Q) = A−1(S⊥) =
N(PMA1/2). �

If, in addition to the hypothesis of the proposition, R(PAP ) is supposed to be
closed, then

Q = (PAP )†PA = (A1/2P )†PMA1/2 = (A1/2P )†A1/2.

In fact, PAP has closed range if and only if A1/2P has, so that the Moore-Penrose
inverses of these operators are bounded and, by the comments following Dou-
glas’ theorem, the reduced solution of (PAP )X = PA is (PAP )†PA and that
of (A1/2P )X = PM is (A1/2P )†PMA1/2; finally, (A1/2P )†PM = (A1/2P )† because
both operators satisfy the defining equations of the Moore-Penrose pseudoinverse
of A1/2P .

Concerning the minimal properties of PA,S in P (A,S), mentioned in the Intro-
duction, we describe two of them. First, ‖PA,S‖ ≤ ‖Q‖ for all Q ∈ P (A,S), but,
in general, it is not the unique element of P (A,S) with this property (see [9]). In
order to describe the second property, we introduce some notation: if T ∈ L(H,K),
S is a closed subspace of H and x ∈ H, then a (T,S)-interpolant of x is an element
of the set spl(T,S, x) = {z ∈ x + S : ‖Tz‖ = infs∈S ‖T (x + s)‖}. The elements of
spl(T,S, x) are also called abstract splines, (see de Boor [6], Izumino [22], or [11]).
If A = T ∗T , the following conditions hold:

(1) spl (T,S, x) = {z ∈ x+S : |z|A = inf{|x−s|A : s ∈ S}}, where |.|A denotes
the seminorm induced by A, i.e., |x|2A = 〈Ax, x〉;

(2) spl (T,S, x) is not empty for all x ∈ H if and only if (A,S) is compatible;
(3) spl (T,S, x) has a unique element for all x ∈ H if and only if (A,S) is

compatible and S ∩ N(A) = 0;
(4) if (A,S) is compatible and x ∈ H, then (1 − PA,S)x is the unique element

of spl (T,S, x) with minimal norm.
The proofs of these facts can be found in [11].
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4. Operator ranges

In this section we recall a well-known construction of a Hilbertian structure on
the range of an operator (see [7], [18] or [1]). We include some new facts which will
prove to be useful in the following section.

4.1. As we have already seen any A ∈ L(H)+ induces a semi-inner product on H,
by means of (x, y)A = 〈Ax, y〉, x, y ∈ H. Denote by K = R(A) and PK ∈ L(H)
the orthogonal projection onto K. Since K = N(A)⊥, we can define on K the inner
product

(x, y)A = 〈Ax, y〉 , x, y ∈ K.

This inner product induces the norm |x|A = (x, x)1/2
A = 〈Ax, x〉1/2, x ∈ K. Let HA

be the completion of the inner product space (K, ( , )A). We assume that K ⊆ HA.
Then, the projection PK induces a map ϕ : H → HA, defined by ϕ(x) = PKx,

x ∈ H. Note that ϕ has nullspace K⊥ = N(A).

For every subspace S of H, ϕ(S) is a subspace in HA. By ϕ(S)
HA we denote

its closure in (HA, ( , )A). Then the orthogonal projection from HA onto ϕ(S)
HA

always exists, even if the original pair (A,S) is not compatible.
The relative position in H between S and N(A) obviously affects the “size” of

the projection. In this section we deduce conditions on this projection in order to
obtain the compatibility of (A,S).

4.2. The construction of HA can be performed in the context of operator ranges.
We refer the reader to the papers by Dixmier [16] and Fillmore and Williams [18]
and to Ando’s book [1].

Consider T ∈ L(H,K). The range of T can be given a Hilbert space structure
(R(T ), 〈 , 〉T ) in a unique way, such that T becomes a coisometry from (H, 〈 , 〉)
to (R(T ), 〈 , 〉T ) (see [1]). More precisely, as T : N(T )⊥ → R(T ) is a bijection,
define 〈Tx, Ty〉T =

〈
PN(T )⊥x, PN(T )⊥y

〉
, for x, y ∈ H. For u ∈ R(T ), denote

‖u‖T = 〈u, u〉1/2
T . The key fact is that the operator T : (H, 〈 , 〉) → (R(T ), 〈 , 〉T ) is

a coisometry. Observe that ‖u‖T = min{‖a‖ : Ta = u}, for all u ∈ R(T ), because
Ta = TPN(T )⊥a and ‖PN(T )⊥a‖ ≤ ‖a‖. Therefore, T : (H, 〈 , 〉) → (R(T ), 〈 , 〉T ) is
bounded, i.e., ‖Ta‖T ≤ ‖a‖, for all a ∈ H; also, for each u ∈ R(T ), there is a unique
a ∈ N(T )⊥ such that Ta = u and ‖a‖ = ‖u‖T . As in the introduction, we use the
notation B(T ) = (R(T ), 〈 , 〉T ). In [16] and [18] a number of characterizations
of operator ranges are given. One of them establishes that a subspace R of H is
the range of a bounded operator if and only if there is an inner product 〈 , 〉′ on
R such that (R, 〈 , 〉′) is a Hilbert space and ‖x‖′ ≥ ‖x‖ for all x ∈ R (see [18],
Theorem 1.1). More precisely, given T ∈ L(H,K), consider T1 = (T |N(T )⊥)−1,
T1 : R(T ) → N(T )⊥, and define 〈u, v〉′ = 〈u, v〉 + 〈T1u, T1v〉, for u, v ∈ R(T ).
Then 〈 , 〉′ is complete and ‖u‖′ ≥ ‖u‖ for all u ∈ R. In fact, the inner products
〈 , 〉′ and 〈 , 〉T are equivalent: first, observe that if Tx = u for x ∈ H, then
T1u = T1Tx = T1TPN(T )⊥x = PN(T )⊥x. Therefore, ‖u‖′2 = 〈u, u〉′ = 〈Tx, Tx〉′ ≥
〈T1Tx, T1Tx〉 = ‖PN(T )⊥x‖2 = ‖u‖2

T , so that ‖u‖T ≤ ‖u‖′. Conversely, ‖u‖′2 =
‖TPN(T )⊥x‖2+‖u‖2

T ≤ (‖T‖2+1)‖u‖2
T . Observe also that 〈u, v〉′ = 〈u, v〉+〈u, v〉T ,

for u, v ∈ R.

We shall consider the construction above for any positive operator on H. More
precisely, given A ∈ L(H)+ consider R(A1/2) with the norm induced by 〈 , 〉A1/2 ,
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i.e., the space B(A1/2). The next lemma shows that A provides an isometric iso-
morphism between HA and B(A1/2). It should be mentioned that the subtle re-
lationship between R(A) and R(A1/2) is fundamental in this and all remaining
results.

Lemma 4.3. Given A ∈ L(H)+,

A|R(A) :
(
R(A), ( , )A

)
→ B(A1/2)

is an isometry with dense image and then it admits a unitary extension

A′ : (HA, ( , )A) → B(A1/2).

Proof. Denote, as before, K = R(A). For all x ∈ K, it follows that

‖Ax‖A1/2 = ‖PKA1/2x‖ = ‖A1/2x‖ = |x|A.

Also, if x ∈ K and ‖Ax‖A1/2 = 0, then |x|A = ‖A1/2x‖ = 0 so that x ∈ N(A1/2) =
N(A), and x = 0. It remains to prove that the image of A|K is dense in B(A1/2):
since R(A1/2) is dense in K, for any x ∈ H there exists a sequence {xn} in H such
that A1/2xn → PKx, which means that Axn → u in B(A1/2), for any u ∈ R(A1/2).
Then A|K : K → R(A) ⊆ B(A1/2) admits a unitary extension from the completion
of K, namely HA, onto B(A1/2). �

Remark 4.4. More generally, for t ∈ [0, 1] consider At and define in R(At) the inner
product 〈Atx, Aty〉At = 〈PKx, PKy〉. Observe that R(At) = K, for all t ∈ [0, 1].
Denote 〈Atx, Aty〉t = 〈Atx, Aty〉At , for x, y ∈ H, ‖Atx‖t = ‖Atx‖At = ‖At/2x‖,
(x, y)t = (x, y)At and Ht = HAt . Then |x|t = |x|At = ‖At/2x‖.

As before, we get:

Corollary 4.5. Given A ∈ L(H)+, the operator

At|R(A) : (R(A), ( , )t) → B(At/2)

is an isometry with dense image and it admits a unitary extension

(At)′ : (Ht, ( , )t) → B(At/2) .

Proof. Straightforward. �

We have the following commutative diagram:

H ϕ−→ (R(A), ( , )A) i−→ (HA, ( , )A)⏐⏐
A
⏐⏐
A′

H A−→ (R(A), 〈 , 〉A1/2)
j−→ B(A1/2)

which relates two maps from H into two Hilbert spaces associated to the operator
A. By the lemma above these two spaces are isometrically isomorphic. Observe
that the images of the subspace S of H in HA and B(A1/2) are, respectively, φ(A)
and A(S).

The next result, which has been proved by Barnes for injective operators (see
[4]), characterizes the operators B ∈ L(H) which can be extended to L(B(A1/2)).
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Lemma 4.6. Consider B ∈ L(H). There exists B̃ ∈ L(B(A1/2)) such that B̃A =
AB if and only if B(N(A)) ⊆ N(A) and R(B∗A1/2) ⊆ R(A1/2). In this case, such
an operator is unique.

Proof. Let B̃ ∈ L(B(A1/2)) such that B̃A = AB; if x ∈ N(A), then ABx = 0
so that Bx ∈ N(A) and B(N(A)) ⊆ N(A). Since B̃ ∈ L(B(A1/2)), there exists
C > 0 such that ‖B̃Ax‖A1/2 ≤ C‖Ax‖A1/2 for all x ∈ H; equivalently, ‖ABx‖A1/2 ≤
C‖Ax‖A1/2 . By definition of ‖ ‖A1/2 , this means

‖PR(A)A
1/2Bx‖ ≤ C‖PR(A)A

1/2x‖ or ‖A1/2Bx‖ ≤ C‖A1/2x‖,

because R(A1/2) ⊆ R(A). By Douglas’ theorem, the last inequality is equivalent to
R(B∗A1/2) ⊆ R(A1/2). Conversely, if these conditions hold, it is easy to see that B̃
can be defined in R(A) and extended to a bounded operator in B(A1/2). If there
exists C ∈ L(B(A1/2)) such that CA = B̃A, then C and B̃ coincide in R(A), which
is dense in B(A1/2), so that C = B̃. �

4.7. Given a subspace W of B(A1/2) the closure (resp. the orthogonal complement)
of W in B(A1/2) is denoted W ′

(resp. W⊥′
). If S is a closed subspace of H and

W = A(S), then M = W ′
= A1/2

(
A1/2(S)

)
and

M⊥′
= W⊥′

= A1/2(A1/2(S)⊥) = S⊥ ∩ R(A1/2).

From now on QA,S ∈ L(B(A1/2)) denotes the orthogonal projection onto M. Then
R(QA,S) = M = A1/2(A1/2(S)) and N(QA,S) = M⊥′

= S⊥ ∩ R(A1/2). Observe
that A(S) ⊆ R(QA,S) and A(A−1(S⊥)) = S⊥ ∩ R(A) ⊆ N(QA,S).

Lemma 4.8. S⊥ ∩ R(A)
′

= M⊥′
if and only if A(S) + S⊥ ∩ R(A) is dense in

B(A1/2).

Proof. A(S) + S⊥ ∩ R(A)
′
= M + S⊥ ∩ R(A)

′
because S⊥ ∩ R(A) ⊆ M⊥′

. Then
S⊥ ∩ R(A)

′
= M⊥′

if and only if A(S) + S⊥ ∩ R(A) is dense in B(A1/2). �

5. Compatibility and operator ranges

We now have the tools for proving the relationship between the compatibility of
A with S and the properties of the orthogonal projection QA,S ∈ L(B(A1/2)) onto
M = A(S)

′
. We start with a technical result.

Proposition 5.1. Given A ∈ L(H)+ the following conditions are equivalent:
i) (A,S) is compatible.
ii) A1/2(S)+A1/2(S)⊥∩R(A1/2) is closed in R(A1/2) and A1/2(S)⊥∩R(A1/2)

is dense in A1/2(S)⊥ ∩ R(A1/2).
iii) R(A) = M∩R(A)+M⊥′∩R(A) and A(S) is closed in R(A) in the topology

of B(A1/2).

Proof. Denote T = A1/2(S)⊥ ∩ R(A1/2).
i) → ii) By Remark 3.6 (A,S) is compatible if and only if R(A1/2) = A1/2(S)+

T , so that A1/2(S) + T is closed in R(A1/2). Also

R(A1/2) = A1/2(S) + T ⊆ A1/2(S) + A1/2(S)⊥ ∩ R(A1/2) ⊆ R(A1/2).

Therefore T is dense in A1/2(S)⊥ ∩ R(A1/2).
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ii) → iii) By assumption, it follows that

A1/2(S) + T = A1/2(S) + T ∩ R(A1/2)
=

(
A1/2(S) + T

)
∩ R(A1/2)

= R(A1/2) ∩ R(A1/2) = R(A1/2),

because T = A1/2(S)⊥ ∩ R(A1/2). Then R(A1/2) = A1/2(S) + T and

R(A) = A1/2(R(A1/2)) = A(S) + A1/2(T )
⊆ A(S) + M⊥′ ∩ R(A)
⊆ M∩ R(A) + M⊥′ ∩ R(A) ⊆ R(A).

Therefore R(A) = M∩ R(A) + M⊥′ ∩ R(A) and M∩ R(A) = A(S).
iii) → i) Straightforward. �

Remark 5.2. Condition ii) is equivalent to ii′): A(S)+S⊥∩R(A) is closed in R(A)
under the topology of B(A1/2) and S⊥ ∩ R(A)

′
= M⊥′

. In fact, from the proof of
ii)→ iii) we get that R(A) = A(S) + M⊥′ ∩ R(A) = A(S) + S⊥ ∩ R(A) so that
A(S) + S⊥ ∩ R(A) is closed in (R(A), 〈 , 〉A1/2) and S⊥ ∩ R(A)

′
= M⊥′

. The
converse is similar. �

In the last part of the paper, we relate the compatibility of the pair (A,S)
with the existence of certain projections in B(A1/2). As before, M = A(S)

′
=

A1/2(A1/2(S)).

Theorem 5.3. If (A,S) is compatible, then there exists P̃A,S ∈ L(B(A1/2)) such
that P̃A,SA = APA,S . Moreover, P̃A,S = QA,S .

Proof. If (A,S) is compatible, then, by Proposition 3.10, R = PA,S�N is the re-
duced solution of

A1/2PX = P
A1/2(S)

A1/2

and PA,S = R+PN where N = S ∩N(A). Observe that A1/2PA,S = A1/2PPA,S =
A1/2PR = P

A1/2(S)
A1/2 because R(PA,S) = S. Therefore PA,S verifies A1/2PA,S =

P
A1/2(S)

A1/2 so that P ∗
A,SA1/2 = A1/2P

A1/2(S)
and then R(P ∗

A,SA1/2) ⊆ R(A1/2).
In order to Apply Lemma 4.6, let x ∈ N(A) and observe that

A1/2PA,Sx = P
A1/2(S)

A1/2x = 0,

because N(A) = N(A1/2), so PA,Sx ∈ N(A). By Lemma 4.6, there exists P̃A,S ∈
L(B(A1/2)) such that P̃A,SA = APA,S ; now, P̃A,S(R(A)) = A(R(PA,S)) = A(S), so
that A(S) ⊆ R(P̃A,S) and M = A(S)

′ ⊆ R(P̃A,S). Also, A(N(PA,S)) ⊆ N(P̃A,S) ⊆
M⊥′

, which implies S⊥ ∩ R(A)
′
⊆ N(P̃A,S) ⊆ M⊥′

. But S⊥ ∩ R(A)
′

= M⊥′

because (A,S) is compatible and the proposition and remark above apply. Then
R(P̃A,S) = M, so that P̃A,S = QA,S . �

The next theorem gives a simple characterization of compatibility:

Theorem 5.4. (A,S) is compatible if and only if QA,S(R(A)) = A(S).
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Proof. If (A,S) is compatible, then, by Theorem 5.3, P̃A,S = QA,S , so that

QA,S(R(A)) = QA,SA(H) = APA,S(H) = A(S).

Conversely, if QA,S(R(A)) = A(S), any x ∈ R(A) decomposes as x = x1 +
(I−QA,S)x, where x1 = As for some s ∈ S; then (I−QA,S)x ∈ N(QA,S)∩R(A) =
S⊥ ∩R(A) and R(A) = A(S)+S⊥ ∩R(A). Then, H = S + A−1(S⊥), which shows
that (A,S) is compatible. �

Denote A� = (A|R(A))
−1 : R(A) → R(A).

Lemma 5.5. The projection QA,S satisfies QA,S(R(A)) ⊆ R(A) if and only if
R(A) = M∩R(A)+M⊥′∩R(A); in this case QA,S(R(A)) = M∩R(A). Moreover,
A�QA,SA : H → H is a bounded projection if and only if M ∩ R(A) is closed in
R(A) (under the topology of H).

Proof. Observe that, by the definition of M, QA,S(R(A)) ⊆ R(A) if and only if
QA,Sx ∈ M ∩ R(A), for all x ∈ R(A). Then (I − QA,S)x ∈ M⊥′ ∩ R(A) so
that R(A) = M∩ R(A) + M⊥′ ∩ R(A). On the other hand, it is always the case
that M ∩ R(A) ⊆ QA,S(R(A)). Then QA,S(R(A)) = M ∩ R(A). The converse
is similar. If QA,S(R(A)) ⊆ R(A), then A�QA,SA : H → H is well defined and
it is obviously a projection. Let us prove that it is bounded. For this, observe
that N(A�QA,SA) = N(QA,SA) = A−1(S⊥) is closed and, also, R(A�QA,SA) =
A�QA,S(R(A)) = A�(M ∩ R(A)) is closed, because M ∩ R(A) is closed in R(A).
This proves that A�QA,SA is bounded. �

Consider now the following subalgebra of L(H):

L(H)A = {T ∈ L(H) : T (N(A)) ⊆ N(A) and R(T ∗A1/2) ⊆ R(A1/2)}.

By Lemma 4.6 the elements of L(H)A induce operators on B(A1/2) by means of

θ : L(H)A → L(B(A1/2)) given by T �→ θ(T ) = T̃ , T ∈ L(H)A,

where T̃Ax = ATx, for all x ∈ H.

Theorem 5.6. Given a closed subspace W of B(A1/2) and QW ∈ L(B(A1/2)) the
orthogonal projection onto W, then θ−1({QW}) is nonempty if and only if (A,S)
is compatible, where S is any closed subspace of H such that A(S) is dense in W.

Proof. If there exists S such that (A,S) is compatible and A(S) is dense in W , then,
by Theorem 5.3, there exists P̃A,S ∈ L(B(A1/2)) such that P̃A,S = QW . Therefore
θ(PA,S) = QW .

Conversely, if θ−1(QW) is nonempty, then there exists T ∈ L(H)A such that
T̃ = QW and T̃A = AT ; then QW(R(A)) ⊆ R(A). By Lemma 5.5 this inclusion
is equivalent to R(A) = W ∩ R(A) + W⊥′ ∩ R(A) and in this case QW(R(A)) =
W ∩ R(A). Then W ∩ R(A)

′
= W because R(A) is dense in B(A1/2). Again by

Lemma 5.5, W ∩ R(A) is closed in R(A) because A�QWA = PR(A)T is a bounded
projection in H. Then S = A−1(W ∩ R(A)) is a closed subspace of H such that
A(S) = W ∩R(A) in H because W∩R(A) is closed, so that A(S)

′
= W . Applying

Theorem 5.4 to QW , since QW(R(A)) = A(S), with A(S)
′

= W we obtain that
(A,S) is compatible. �
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Proposition 5.7. Let S be a closed subspace of H and W = A(S)
′
. If θ−1({QW})

is nonempty, then P (A,S) ⊆ θ−1({QW}). Moreover P (A, T ) ⊆ θ−1({QW}) for all
closed subspaces T of H, such that A(T ) = A(S).

Proof. If R ∈ P (A,S), then R = PA,S + T , where T ∈ L(S⊥,N ) (see [9]). Then
θ(R) = θ(PA,S) = P̃A,S because T̃A = AT = 0.

If A(T ) = A(S), then PR(A)(T ) = PR(A)(S). Observe that, by Proposition 5.6,
(A,S) is compatible because θ−1({QW}) is nonempty; therefore (A, T ) is compat-
ible by Corollary 3.5. But, by Proposition 5.3, P̃A,T is the orthogonal projection
onto A(T )

′
= W so that θ(PA,T ) = θ(PA,S) and θ(P (A, T )) = θ(PA,T ). �

Remark 5.8. If one decides to avoid the use of operator ranges with their natural
Hilbertian structure, then by Remark 3.6, (A,S) is compatible if and only if A1/2(S)
is a closed subspace of R(A1/2) which admits an orthogonal complement in R(A1/2);
observe that, as a subspace of H, R(A1/2) is an incomplete inner product space,
unless R(A) is closed. Therefore, the compatibility problem is equivalent to finding
an inner-product space (D, 〈 , 〉), all closed subspaces of D that admit an orthogonal
complement in D. These subspaces are called Chebyshev subspaces in the theory
of best approximation (see [15] for a nice treatment of Chebyshev sets in inner
product spaces).
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