Stability of wavelet frames with matrix dilations
HTML articles powered by AMS MathViewer
- by Ole Christensen and Wenchang Sun
- Proc. Amer. Math. Soc. 134 (2006), 831-842
- DOI: https://doi.org/10.1090/S0002-9939-05-08134-7
- Published electronically: July 20, 2005
- PDF | Request permission
Abstract:
Under certain assumptions we show that a wavelet frame \[ \{\tau (A_j,b_{j,k})\psi \}_{j,k\in \mathbb {Z}}:= \{|\det A_j |^{-1/2} \psi (A_j^{-1}(x-b_{j,k}))\}_{j,k\in \mathbb {Z}}\] in $L^2(\mathbb {R}^d)$ remains a frame when the dilation matrices $A_j$ and the translation parameters $b_{j,k}$ are perturbed. As a special case of our result, we obtain that if $\{\tau (A^j,A^jBn)\psi \}_{j\in \mathbb {Z},n\in \mathbb {Z}^d}$ is a frame for an expansive matrix $A$ and an invertible matrix $B$, then $\{\tau (A_j^\prime ,A^jB\lambda _n)\psi \}_{j\in \mathbb {Z}, n\in \mathbb {Z}^d}$ is a frame if $\|A^{-j}A’_j - I\|_2\le \varepsilon$ and $\|\lambda _n - n\|_{\infty } \le \eta$ for sufficiently small $\varepsilon , \eta >0$.References
- Akram Aldroubi, Carlos Cabrelli, and Ursula M. Molter, Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for $L^2({\Bbb R}^d)$, Appl. Comput. Harmon. Anal. 17 (2004), no. 2, 119–140. MR 2082156, DOI 10.1016/j.acha.2004.03.005
- Radu Balan, Stability theorems for Fourier frames and wavelet Riesz bases, J. Fourier Anal. Appl. 3 (1997), no. 5, 499–504. Dedicated to the memory of Richard J. Duffin. MR 1491930, DOI 10.1007/BF02648880
- John J. Benedetto, Irregular sampling and frames, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 445–507. MR 1161260
- Ole Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2199–2201. MR 1246520, DOI 10.1090/S0002-9939-1995-1246520-X
- Ole Christensen, Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 3, 273–291. MR 1824891, DOI 10.1090/S0273-0979-01-00903-X
- Ole Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. MR 1946982, DOI 10.1007/978-0-8176-8224-8
- Ole Christensen, Sergio Favier, and Felipe Zó, Irregular wavelet frames and Gabor frames, Approx. Theory Appl. (N.S.) 17 (2001), no. 3, 90–101. MR 1885530, DOI 10.1023/A:1015562614408
- Charles K. Chui and Xianliang Shi, Orthonormal wavelets and tight frames with arbitrary real dilations, Appl. Comput. Harmon. Anal. 9 (2000), no. 3, 243–264. MR 1793418, DOI 10.1006/acha.2000.0316
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 160–173. MR 1325538, DOI 10.1006/acha.1995.1012
- Michael Frazier, Gustavo Garrigós, Kunchuan Wang, and Guido Weiss, A characterization of functions that generate wavelet and related expansion, Proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996), 1997, pp. 883–906. MR 1600215, DOI 10.1007/BF02656493
- Karlheinz Gröchenig, Irregular sampling of wavelet and short-time Fourier transforms, Constr. Approx. 9 (1993), no. 2-3, 283–297. MR 1215773, DOI 10.1007/BF01198007
- Christopher E. Heil and David F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), no. 4, 628–666. MR 1025485, DOI 10.1137/1031129
- Eugenio Hernández, Demetrio Labate, and Guido Weiss, A unified characterization of reproducing systems generated by a finite family. II, J. Geom. Anal. 12 (2002), no. 4, 615–662. MR 1916862, DOI 10.1007/BF02930656
- Richard S. Laugesen, Completeness of orthonormal wavelet systems for arbitrary real dilations, Appl. Comput. Harmon. Anal. 11 (2001), no. 3, 455–473. MR 1866351, DOI 10.1006/acha.2001.0365
- Peder A. Olsen and Kristian Seip, A note on irregular discrete wavelet transforms, IEEE Trans. Inform. Theory 38 (1992), no. 2, 861–863. MR 1162222, DOI 10.1109/18.119741
- Amos Ron and Zuowei Shen, Affine systems in $L_2(\mathbf R^d)$: the analysis of the analysis operator, J. Funct. Anal. 148 (1997), no. 2, 408–447. MR 1469348, DOI 10.1006/jfan.1996.3079
- Wenchang Sun and Xingwei Zhou, Irregular wavelet frames, Sci. China Ser. A 43 (2000), no. 2, 122–127. MR 1763090, DOI 10.1007/BF02876037
- Wenchang Sun and Xingwei Zhou, Irregular wavelet/Gabor frames, Appl. Comput. Harmon. Anal. 13 (2002), no. 1, 63–76. MR 1930176, DOI 10.1016/S1063-5203(02)00002-7
- Wenchang Sun and Xingwei Zhou, Density and stability of wavelet frames, Appl. Comput. Harmon. Anal. 15 (2003), no. 2, 117–133. MR 2007054, DOI 10.1016/S1063-5203(03)00049-6
- Wenchang Sun and Xingwei Zhou, Density of irregular wavelet frames, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2377–2387. MR 2052416, DOI 10.1090/S0002-9939-04-07410-6
- Deyun Yang and Xingwei Zhou, Wavelet frames with irregular matrix dilations and their stability, J. Math. Anal. Appl. 295 (2004), no. 1, 97–106. MR 2064410, DOI 10.1016/j.jmaa.2004.03.007
- Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684
- Xingwei Zhou and Yongquan Li, A class of irregular wavelet frames, Chinese Sci. Bull. 42 (1997), no. 17, 1420–1423. MR 1488511, DOI 10.1007/BF02883048
Bibliographic Information
- Ole Christensen
- Affiliation: Department of Mathematics, Technical University of Denmark, Building 303, 2800 Lyngby, Denmark
- MR Author ID: 339614
- Email: Ole.Christensen@mat.dtu.dk
- Wenchang Sun
- Affiliation: Department of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China – and – NUHAG, Department of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria
- ORCID: 0000-0002-5841-9950
- Email: sunwch@nankai.edu.cn
- Received by editor(s): June 21, 2004
- Received by editor(s) in revised form: October 21, 2004
- Published electronically: July 20, 2005
- Additional Notes: This work was done while the second author was visiting the Department of Mathematics, Technical University of Denmark. He thanks the Department for hospitality and support. He is supported partially by the National Natural Science Foundation of China (10201014), Program for New Century Excellent Talents in University, and the Research Fund for the Doctoral Program of Higher Education.
- Communicated by: David R. Larson
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 831-842
- MSC (2000): Primary 42C40, 41A58
- DOI: https://doi.org/10.1090/S0002-9939-05-08134-7
- MathSciNet review: 2180901