On the number of different prime divisors of element orders
HTML articles powered by AMS MathViewer
- by Alexander Moretó
- Proc. Amer. Math. Soc. 134 (2006), 617-619
- DOI: https://doi.org/10.1090/S0002-9939-05-08156-6
- Published electronically: July 7, 2005
- PDF | Request permission
Abstract:
We prove that the number of different prime divisors of the order of a finite group is bounded by a polynomial function of the maximum of the number of different prime divisors of the element orders. This improves a result of J. Zhang.References
- Bertram Huppert, Character theory of finite groups, De Gruyter Expositions in Mathematics, vol. 25, Walter de Gruyter & Co., Berlin, 1998. MR 1645304, DOI 10.1515/9783110809237
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- Thomas Michael Keller, A linear bound for $\rho (n)$, J. Algebra 178 (1995), no. 2, 643–652. MR 1359907, DOI 10.1006/jabr.1995.1370
- A. Moretó, G. Qian, W. Shi, Finite groups whose conjugacy class graphs have few vertices, to appear in Arch. Math.
- Paulo Ribenboim, The book of prime number records, Springer-Verlag, New York, 1988. MR 931080, DOI 10.1007/978-1-4684-9938-4
- Ji Ping Zhang, Arithmetical conditions on element orders and group structure, Proc. Amer. Math. Soc. 123 (1995), no. 1, 39–44. MR 1239809, DOI 10.1090/S0002-9939-1995-1239809-1
Bibliographic Information
- Alexander Moretó
- Affiliation: Departament d’Àlgebra, Universitat de València, 46100 Burjassot, València, Spain
- ORCID: 0000-0002-6914-9650
- Email: Alexander.Moreto@uv.es
- Received by editor(s): September 21, 2004
- Published electronically: July 7, 2005
- Additional Notes: This research was supported by the Programa Ramón y Cajal, the Spanish Ministerio de Ciencia y Tecnología, grant BFM2001-0180, and the FEDER
- Communicated by: Jonathan I. Hall
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 617-619
- MSC (2000): Primary 20D60; Secondary 20D06
- DOI: https://doi.org/10.1090/S0002-9939-05-08156-6
- MathSciNet review: 2180876