Fixed points of compact Kakutani maps with antipodal boundary conditions
HTML articles powered by AMS MathViewer
- by Donal O’Regan and Juan Perán
- Proc. Amer. Math. Soc. 134 (2006), 825-830
- DOI: https://doi.org/10.1090/S0002-9939-05-08179-7
- Published electronically: September 20, 2005
- PDF | Request permission
Abstract:
We prove a fixed-point result for compact upper semicontinuous compact-convex-valued multifunctions satisfying antipodal boundary conditions on bounded symmetric subsets of a normed space. Two types or antipodal conditions are considered.References
- Ravi P. Agarwal, Maria Meehan, and Donal O’Regan, Fixed point theory and applications, Cambridge Tracts in Mathematics, vol. 141, Cambridge University Press, Cambridge, 2001. MR 1825411, DOI 10.1017/CBO9780511543005
- Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778, DOI 10.1007/978-94-015-8149-3
- Arrigo Cellina, A theorem on the approximation of compact multivalued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 47 (1969), 429–433 (1970) (English, with Italian summary). MR 276936
- Shiow-Yu Chang, Borsuk’s antipodal and fixed-point theorems for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), no. 3, 937–941. MR 1221720, DOI 10.1090/S0002-9939-1994-1221720-2
- Lech Górniewicz, Topological fixed point theory of multivalued mappings, Mathematics and its Applications, vol. 495, Kluwer Academic Publishers, Dordrecht, 1999. MR 1748378, DOI 10.1007/978-94-015-9195-9
- A. Granas, Theorem on antipodes and theorems on fixed points for a certain class of multi-valued mappings in Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 271–275 (unbound insert) (English, with Russian summary). MR 0117588
- Andrzej Granas and James Dugundji, Fixed point theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR 1987179, DOI 10.1007/978-0-387-21593-8
- Tsoy-wo Ma, Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. (Rozprawy Mat.) 92 (1972), 43. MR 309103
- L. Nirenberg, Topics in nonlinear functional analysis, New York Univ. Lecture Notes, New York, 1974.
Bibliographic Information
- Donal O’Regan
- Affiliation: Department of Mathematics, National University of Ireland, Galway, Ireland
- MR Author ID: 132880
- Juan Perán
- Affiliation: Departamento de Matemática Aplicada, Universidad Nacional de Educación a Distancia, Apartado 60149, Madrid, 28080, Spain
- Email: jperan@ind.uned.es
- Received by editor(s): October 20, 2004
- Published electronically: September 20, 2005
- Additional Notes: This research was supported in part by Ministerio de Ciencia y Tecnología (Spain), project MTM2004-06652-C03-03.
- Communicated by: Jonathan M. Borwein
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 134 (2006), 825-830
- MSC (2000): Primary 47H10, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-05-08179-7
- MathSciNet review: 2180900