## Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth

HTML articles powered by AMS MathViewer

- by O. Druet and F. Robert PDF
- Proc. Amer. Math. Soc.
**134**(2006), 897-908 Request permission

## Abstract:

We are concerned in this paper with the bubbling phenomenon for nonlinear fourth-order four-dimensional PDE’s. The operators in the equations are perturbations of the bi-Laplacian. The nonlinearity is of exponential growth. Such equations arise naturally in statistical physics and geometry. As a consequence of our theorem we get a priori bounds for solutions of our equations.## References

- Sun-Yung A. Chang,
*On a fourth-order partial differential equation in conformal geometry*, Harmonic analysis and partial differential equations (Chicago, IL, 1996) Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999, pp. 127–150. MR**1743859** - Sun-Yung A. Chang and Paul C. Yang,
*On a fourth order curvature invariant*, Spectral problems in geometry and arithmetic (Iowa City, IA, 1997) Contemp. Math., vol. 237, Amer. Math. Soc., Providence, RI, 1999, pp. 9–28. MR**1710786**, DOI 10.1090/conm/237/1710786 - Olivier Druet,
*From one bubble to several bubbles: the low-dimensional case*, J. Differential Geom.**63**(2003), no. 3, 399–473. MR**2015469** - Olivier Druet,
*Compactness for Yamabe metrics in low dimensions*, Int. Math. Res. Not.**23**(2004), 1143–1191. MR**2041549**, DOI 10.1155/S1073792804133278 - Olivier Druet and Emmanuel Hebey,
*Blow-up examples for second order elliptic PDEs of critical Sobolev growth*, Trans. Amer. Math. Soc.**357**(2005), no. 5, 1915–1929. MR**2115082**, DOI 10.1090/S0002-9947-04-03681-5 - Olivier Druet, Emmanuel Hebey, and Frédéric Robert,
*Blow-up theory for elliptic PDEs in Riemannian geometry*, Mathematical Notes, vol. 45, Princeton University Press, Princeton, NJ, 2004. MR**2063399**, DOI 10.1007/BF01158557 - Michael K.-H. Kiessling,
*Statistical mechanics approach to some problems in conformal geometry*, Phys. A**279**(2000), no. 1-4, 353–368. Statistical mechanics: from rigorous results to applications. MR**1797146**, DOI 10.1016/S0378-4371(99)00515-4 - Chang-Shou Lin,
*A classification of solutions of a conformally invariant fourth order equation in $\textbf {R}^n$*, Comment. Math. Helv.**73**(1998), no. 2, 206–231. MR**1611691**, DOI 10.1007/s000140050052 - Paneitz, S., A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds.
*Preprint*, 1983. - Frédéric Robert and Michael Struwe,
*Asymptotic profile for a fourth order PDE with critical exponential growth in dimension four*, Adv. Nonlinear Stud.**4**(2004), no. 4, 397–415. MR**2100905**, DOI 10.1515/ans-2004-0403 - Richard M. Schoen,
*On the number of constant scalar curvature metrics in a conformal class*, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 311–320. MR**1173050**

## Additional Information

**O. Druet**- Affiliation: Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon cedex 7, France
- Email: odruet@umpa.ens-lyon.fr
**F. Robert**- Affiliation: Université de Nice Sophia-Antipolis, Laboratoire J. A. Dieudonné, Parc Valrose, 06108 Nice cedex 2, France
- Email: frobert@math.unice.fr
- Received by editor(s): September 29, 2004
- Published electronically: September 28, 2005
- Communicated by: Jozef Dodziuk
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**134**(2006), 897-908 - MSC (2000): Primary 58E30, 58J05, 35J35
- DOI: https://doi.org/10.1090/S0002-9939-05-08330-9
- MathSciNet review: 2180908