The set of common fixed points of a one-parameter continuous semigroup of mappings is $F \big ( T(1) \big ) \cap F \big ( T(\sqrt 2) \big )$
HTML articles powered by AMS MathViewer
- by Tomonari Suzuki
- Proc. Amer. Math. Soc. 134 (2006), 673-681
- DOI: https://doi.org/10.1090/S0002-9939-05-08361-9
- Published electronically: September 28, 2005
- PDF | Request permission
Abstract:
In this paper we prove the following theorem: Let $\{ T(t) : t \geq 0 \}$ be a one-parameter continuous semigroup of mappings on a subset $C$ of a Banach space $E$. The set of all fixed points of $T(t)$ is denoted by $F \big ( T(t) \big )$ for each $t \geq 0$. Then \[ \bigcap _{t \geq 0} F \big ( T(t) \big ) = F \big ( T(1) \big ) \cap F \big ( T(\sqrt 2) \big ) \] holds. Using this theorem, we discuss convergence theorems to a common fixed point of $\{ T(t) : t \geq 0 \}$.References
- Sachiko Atsushiba and Wataru Takahashi, Strong convergence theorems for one-parameter nonexpansive semigroups with compact domains, Fixed point theory and applications. Vol. 3, Nova Sci. Publ., Huntington, NY, 2002, pp. 15–31. MR 2081406
- Jean-Bernard Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), no. 22, Aii, A1511–A1514 (French, with English summary). MR 375009
- Jean-Bernard Baillon, Quelques propriétés de convergence asymptotique pour les semi-groupes de contractions impaires, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Ai, A75–A78 (French, with English summary). MR 425702
- S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1922), 133–181.
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI 10.1073/pnas.54.4.1041
- Felix E. Browder, Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82–90. MR 206765, DOI 10.1007/BF00251595
- Ronald E. Bruck Jr., Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251–262. MR 324491, DOI 10.1090/S0002-9947-1973-0324491-8
- Ronald E. Bruck Jr., A common fixed point theorem for a commuting family of nonexpansive mappings, Pacific J. Math. 53 (1974), 59–71. MR 361945, DOI 10.2140/pjm.1974.53.59
- Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258 (German). MR 190718, DOI 10.1002/mana.19650300312
- Benjamin Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957–961. MR 218938, DOI 10.1090/S0002-9904-1967-11864-0
- Norimichi Hirano, Nonlinear ergodic theorems and weak convergence theorems, J. Math. Soc. Japan 34 (1982), no. 1, 35–46. MR 639803, DOI 10.2969/jmsj/03410035
- Shiro Ishikawa, Common fixed points and iteration of commuting nonexpansive mappings, Pacific J. Math. 80 (1979), no. 2, 493–501. MR 539430, DOI 10.2140/pjm.1979.80.493
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- M. A. Krasnosel′skiĭ, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123–127 (Russian). MR 0068119
- W. Robert Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. MR 54846, DOI 10.1090/S0002-9939-1953-0054846-3
- Isao Miyadera and Kazuo Kobayasi, On the asymptotic behaviour of almost-orbits of nonlinear contraction semigroups in Banach spaces, Nonlinear Anal. 6 (1982), no. 4, 349–365. MR 654811, DOI 10.1016/0362-546X(82)90021-9
- Simeon Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 274–276. MR 528688, DOI 10.1016/0022-247X(79)90024-6
- Naoki Shioji and Wataru Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces, Nonlinear Anal. 34 (1998), no. 1, 87–99. MR 1631657, DOI 10.1016/S0362-546X(97)00682-2
- Tomonari Suzuki, Strong convergence theorem to common fixed points of two nonexpansive mappings in general Banach spaces, J. Nonlinear Convex Anal. 3 (2002), no. 3, 381–391. MR 1947106
- Tomonari Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2133–2136. MR 1963759, DOI 10.1090/S0002-9939-02-06844-2
- Tomonari Suzuki, Common fixed points of two nonexpansive mappings in Banach spaces, Bull. Austral. Math. Soc. 69 (2004), no. 1, 1–18. MR 2040045, DOI 10.1017/S0004972700034213
- Tomonari Suzuki and Wataru Takahashi, Strong convergence of Mann’s type sequences for one-parameter nonexpansive semigroups in general Banach spaces, J. Nonlinear Convex Anal. 5 (2004), no. 2, 209–216. MR 2083912
- Wataru Takahashi, Nonlinear functional analysis, Yokohama Publishers, Yokohama, 2000. Fixed point theory and its applications. MR 1864294
- Rainer Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel) 58 (1992), no. 5, 486–491. MR 1156581, DOI 10.1007/BF01190119
Bibliographic Information
- Tomonari Suzuki
- Affiliation: Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550, Japan
- Email: suzuki-t@mns.kyutech.ac.jp
- Received by editor(s): December 17, 2003
- Published electronically: September 28, 2005
- Additional Notes: The author was supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology.
- Communicated by: Jonathan M. Borwein
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 673-681
- MSC (2000): Primary 47H20, 47H10
- DOI: https://doi.org/10.1090/S0002-9939-05-08361-9
- MathSciNet review: 2180883