Gromov hyperbolicity of the $j_G$ and ${\tilde \jmath }_G$ metrics
HTML articles powered by AMS MathViewer
- by Peter A. Hästö
- Proc. Amer. Math. Soc. 134 (2006), 1137-1142
- DOI: https://doi.org/10.1090/S0002-9939-05-08053-6
- Published electronically: August 29, 2005
- PDF | Request permission
Abstract:
In this note it is shown that the ${\tilde \jmath }_G$ metric is always Gromov hyperbolic, but that the $j_G$ metric is Gromov hyperbolic if and only if $G$ has exactly one boundary point. As a corollary we get a new proof for the fact that the quasihyperbolic metric is Gromov hyperbolic in uniform domains.References
- Yves Benoist, Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. Inst. Hautes Études Sci. 97 (2003), 181–237 (French, with English summary). MR 2010741, DOI 10.1007/s10240-003-0012-4
- Mario Bonk, Juha Heinonen, and Pekka Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001), viii+99. MR 1829896
- M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306. MR 1771428, DOI 10.1007/s000390050009
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648, DOI 10.1007/978-1-4684-9167-8
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Anders Karlsson and Guennadi A. Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. (2) 48 (2002), no. 1-2, 73–89. MR 1923418
- J. Väisälä: Gromov hyperbolic spaces, preprint (2004). [Available at http://www.helsinki.fi/~jvaisala/preprints.html]
- J. Väisälä: Hyperbolic and uniform domains in Banach spaces, preprint (2004).[Available at http://www.helsinki.fi/~jvaisala/preprints.html]
- Matti Vuorinen, Conformal invariants and quasiregular mappings, J. Analyse Math. 45 (1985), 69–115. MR 833408, DOI 10.1007/BF02792546
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
Bibliographic Information
- Peter A. Hästö
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Address at time of publication: Department of Mathematics and Statistics, P.O. Box 68, FIN-00014 University of Helsinki, Finland
- Email: peter.hasto@helsinki.fi
- Received by editor(s): March 3, 2004
- Received by editor(s) in revised form: November 3, 2004
- Published electronically: August 29, 2005
- Additional Notes: The author was supported in part by a Gehring-Finland Post-doctoral Fellowship and by the Finnish Academy of Science and Letters.
- Communicated by: Juha M. Heinonen
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 1137-1142
- MSC (2000): Primary 30F45; Secondary 53C23, 30C99
- DOI: https://doi.org/10.1090/S0002-9939-05-08053-6
- MathSciNet review: 2196049