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STABLY AND ALMOST COMPLEX STRUCTURES
ON BOUNDED FLAG MANIFOLDS

YUSUF CIVAN

(Communicated by Paul Goerss)

Abstract. We study the enumeration problem of stably complex structures
on bounded flag manifolds arising from omniorientations, and determine those
induced by almost complex structures. We also enumerate the stably complex
structures on these manifolds which bound, therefore representing zero in the
complex cobordism ring ΩU

∗ .

1. Introduction

The geometry of torus actions on varieties and manifolds has long been studied
in various mathematical disciplines. The starting point lies in the discovery of a
relationship between polyhedral and algebraic geometry. This relationship involves
the theory of toric varieties, sometimes known as torus embeddings.

The underlying combinatorial data for constructing a toric variety is constrained
by the fact that it depends on the geometric realization of a fan as well as its
combinatorial type. In certain respects, this seems to be too strong a requirement,
and may be weakened under suitable circumstances to create smooth manifolds
carrying similar properties to toric varieties. These ideas had led to the discovery
of quasitoric manifolds by Davis and Januszkiewicz [9]. The basic combinatorial
ingredients for constructing quasitorics are more flexible than the existence of a
smooth fan, and require a simple convex polytope P and a collection of primitive
vectors attached to the facets of P . Of course, such a flexible prerequisite has some
disadvantages; for instance, the manifolds which are obtained need not even be
almost complex. However, they always carry a stably complex structure [5].

The bounded flag manifolds fit into both settings and provide beautiful exam-
ples. The quasitoric structure of these manifolds has already been investigated
in [5], and we will display them as toric varieties associated to fans arising from
crosspolytopes. These manifolds were originally constructed by Bott and Samelson,
and were introduced into complex cobordism by Ray [12].

The geometric and computational flavor of the toric geometry enables us to
translate the topological problems into combinatorial ones and vice versa. Un-
der these circumstances, we would like to investigate the enumeration problem of
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stably complex structures on bounded flag manifolds compatible with their toric
structures.

We first recall how to associate a stably complex structure to a quasitoric
manifold by following [5]. Let M2n be a quasitoric manifold over Pn and let
F = {F1, . . . , Fm} be the set of facets of Pn. Then for each Fi, the pre-image
π−1(Fi) is a submanifold M

2(n−1)
i ⊂ M2n with isotropy group a circle T (Fi) in

Tn. Since there is a one-to-one correspondence (up to a sign) between the set of
primitive vectors in Zn and the subcircles in Tn, we obtain the characteristic map
of M2n given by

λ : F → Z
n,

Fi �→ λ(Fi) := λi,

where λi generates the circle T (Fi) in Tn. We note that the map λ is well defined
only up to a sign, and if the sign of each λi is chosen, we then call λ a dicharacteristic
map of M2n. Therefore, there are 2m dicharacteristic maps in total attached to
M2n. On the other hand, each such choice for λi determines an orientation of
the normal bundle νi of M

2(n−1)
i , so an orientation for M

2(n−1)
i . Conversely, an

omniorientation of M2n consists of a choice of an orientation for every submanifold
M

2(n−1)
i , which in turn settles a sign for each vector λi. Thus, every omniorientation

is equipped with a unique dicharacteristic map and vice versa. Buchstaber and Ray
[5] were able to show that any omniorientation of M2n induces a stably complex
structure on it by means of the following isomorphism:

(1.1) τ (M2n) ⊕ R
2(m−n) ∼= ρ1 ⊕ . . . ⊕ ρm,

where the bundles ρi are called facial bundles of M2n, and they are obtained as
the pull-back of the line bundles corresponding to the Thom classes defined by νi’s
along the Pontryagin-Thom collapse. We note that the change of the omniorienta-
tion provides a new stably complex structure. However, two different omniorienta-
tions may induce the same stably complex structure; in other words, they can be
homotopic. Therefore, it would be interesting to find out the number of different
such structures on a given quasitoric manifold M2n. We offer a solution to such a
problem in the case of the bounded flag manifolds.

2. Bounded flag manifolds

The geometry of bounded flag manifolds plays an important role in complex
cobordism, namely that they generate the dual of the Landweber-Novikov algebra
[4]. One way of constructing these manifolds can be obtained by taking iterated
2-sphere bundles, and the other way may be characterized by the set of certain flags
in a complex space.

We begin with introducing some notation. We follow combinatorial convention
by writing [n] for the set of natural numbers {1, 2, . . . , n}, and an interval in the
poset [n] has the form [a, b] for some 1 ≤ a ≤ b ≤ n which consists of all k
satisfying a ≤ k ≤ b. Throughout, ω1, . . . , ωn+1 will denote the standard basis
vectors in Cn+1, and we write CI and CPI for the subspace spanned by the vectors
{ωi : i ∈ I} and the projectivization of CI respectively, where I ⊂ [n + 1].

Definition 2.1. A flag U : 0 < U1 < . . . < Un < Cn+1 is called bounded if
C[i−1] < Ui for each 1 ≤ i ≤ n. The set of all bounded flags in Cn+1 is called
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the bounded flag manifold, which is an n-dimensional smooth complex manifold
and will be denoted by B(Cn+1) (or simply by Bn).

We note that as a consequence of the definition, each bounded flag U is equivalent
to a sequence of lines Lk < Ck ⊕ Lk+1 for 2 ≤ k ≤ n, where Ln+1 = Cn+1.

We consider complex line bundles ηi and η⊥
i over Bn classified respectively by the

maps qn−i+1 and rn−i+1 defined by qn−i+1(U) = Ln−i+1 and rn−i+1(U) = L⊥
n−i+1,

where L⊥
k denotes the orthogonal complement of Lk in Ck ⊕ Lk+1. It then follows

that

(2.1) ηi ⊕ η⊥
i
∼= ηi−1 ⊕ C

for every i, where we take η0 as a trivial line bundle. As detailed in [12], there is
an isomorphism

(2.2) τ (Bn) ⊕ R
2 ∼=

n−1⊕
i=0

ηi ⊕ C,

giving a stably complex structure on Bn. However, each Bn can be identified with
the total space of the sphere bundle of ηn−1 ⊕ R over Bn−1, and the above U -
structure extends over the associated 3-disk bundle; hence, Bn represents zero in
the complex cobordism ring ΩU

∗ .
We let x1, . . . , xn ∈ H2(Bn; Z) denote the respective first Chern classes of

η1, . . . , ηn.

Theorem 2.2 ([4]).The integral cohomology ring H∗(Bn) is generated by x1, . . ., xn,
and these are subject only to the relations x2

1 = 0 and x2
i = xixi−1 for each 2 ≤ i ≤ n

and for all n > 0.

By following Batyrev’s construction [1], we display the bounded flag manifold
Bn as a toric variety and then investigate its quasitoric structure. Let Σ(n) be a
fan spanned by the crosspolytope Qn in R

n with the set of vertices

V (Q) = {e1,−e1, e2,−e1 − e2, . . . , en,−e1 − . . . − en},
where e1, . . . , en are the canonical basis vectors of R

n. The associated smooth toric
variety Mn of Σ(n) can be obtained as a quotient of (C2\0)n by the action of the
algebraic subtorus H(n) of C2n

× consisting of elements of the form

(a1, a1a
−1
2 , . . . , ak, aka−1

k+1, . . . , an−1, an−1a
−1
n , an, an),

where C× = C\{0}, and H(n) acts on (C2\0)n diagonally;

(x1, y1; . . . ; xn, yn) · (a1, . . . , an)(2.3)

:= (x1a1, y1a1a
−1
2 ; . . . ; xn−1an−1, yn−1an−1a

−1
n ; xnan, ynan).

Let [x, y] denote the equivalence class of (x, y) ∈ (C2\0)n under the defined action
so that Mn = {[x, y] : (x, y) ∈ (C2\0)n}. For a given (x, y) ∈ (C2\0)n, we let
ln+1 := ωn+1 and define li := xiωi + yili+1 for 1 ≤ i ≤ n. We then obtain a
bounded flag:

U(x, y) : 0 < L1 < C1 ⊕ L2 < . . . < C[n−1] ⊕ Ln < C[n+1],

where each line Li is spanned by the vector li. Conversely, for any bounded flag
U ∈ Bn, we can find (x, y) ∈ (C2\0)k such that U = U(x, y); however, such a
vector is not always unique. On the other hand, if we define Γ: Mn → Bn by
Γn([x, y]) := U(x, y), it can be verified that Γn is a diffeomorphism of complex
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Figure 1.

manifolds, which displays the bounded flag manifold Bn as a toric variety [6]. In
order to exhibit Bn as a quasitoric manifold, we will use the identification Bn

∼= Mn.
We first note that following the torodial structure of Mn, the group Cn

× acts on Mn

by

(2.4) ((a1, . . . , an), [x, y]) �→ [(a1x1, y1), . . . , (anxn, yn)],

where (a1, . . . , an) ∈ C
n
× and [x, y] ∈ Mn. Since C

n
× contains the compact torus

Tn, the group Tn also acts on Mn in the same way. It is easy to observe that this
action is locally standard. Secondly, the polar of Qn is the cube În (see Figure 1
when n = 2) which is defined by the following half-spaces:

Ĥ0
i := {x ∈ R

n : xi ≤ 1} and Ĥ1
i := {x ∈ R

n : x1 + . . . + xi ≥ −1},

for 1 ≤ i ≤ n, with corresponding facets Ĉγ
i = În ∩ Ĥγ

i , where γ = 0 or 1. To
define the projection π : Mn → În, we first choose a “canonical representative” for
each equivalence class [x, y] ∈ Mn. So, for any given [x, y] ∈ Mn, we consider a
vector (a, b) ∈ [x, y] satisfying |ak|2 + |bk|2 = 1 + |bk−1|2 for each 1 ≤ k ≤ n, where
we set b0 = 1. The existence and uniqueness of such a vector (a, b) for any [x, y] is
obvious. We then define

π : Mn −→ În,(2.5)

[a, b] �→ (1 − |a1|2, 1 − |a2|2, . . . , 1 − |an|2)
for any [a, b] ∈ Mn. On the other hand, it easily follows that the facial submanifolds
π−1(Ĉγ

k ) corresponding to the codimension-one faces of În are Mγ
k , where

(i) M0
k := {[x, y] ∈ Mn | xk = 0} if γ = 0,

(ii) M1
k := {[x, y] ∈ Mn | yk = 0} if γ = 1

for each 1 ≤ j ≤ k. Note that the submanifold M0
k is a copy of Bn−1 whose

flags lie in C[n+1]\{k}, and similarly, M1
k is a copy of Bk−1×Bn−k whose flags lie in

C[k]×C[k+1,n+1]. If we write Tk for the kth coordinate circle in Tn, while Tδ denotes
the diagonal circle, we then obtain that the stabilizer of Mγ

k in Tn is given by Tk

if γ = 0 and Tδ < T k if γ = 1, where the latter is embedded in Tn via the first k
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coordinates, for 1 ≤ k ≤ n. Therefore, we deduce a characteristic map, which may
be represented by the dicharacteristic map λ : {Ĉγ

k : γ = 0, 1 and 1 ≤ k ≤ n} → Zn

for the action of Tn on Mn, defined by

λ(Ĉγ
k ) :=

{
ek, if γ = 0,

−e1 − . . . − ek, if γ = 1,
(2.6)

for each 1 ≤ k ≤ n. Moreover, we may readily identify the facial bundles ρ(Ĉ0
k)

and ρ(Ĉ1
k) with η̄n−k+1 and η⊥

n−k+1 over Bn respectively, where η̄ denotes the
conjugate of η. Thus, the omniorientation corresponding to (2.6) induces the stably
complex structure τ (Bn) ⊕ R2n ∼=

⊕n
k=1 η̄k ⊕ η⊥

k . We note that since the above
omniorientation arises from the toric variety structure of Bn, it is the realification
of the complex isomorphism

(2.7) τ (Bn) ⊕ C
n ∼=

n⊕
k=1

η̄k ⊕ η⊥
k .

A second dicharacteristic map λ′ arises by setting λ′(Ĉ0
k) := −ek and λ′(Ĉ1

k) :=
λ(Ĉ1

k) for 1 ≤ k ≤ n. Then, the corresponding omniorientation induces the stably
complex structure τ (Bn)⊕R2n ∼=

⊕n
k=1 ηk⊕η⊥

k . When combined with the canonical
trivialization ηn⊕

⊕n
k=1 η⊥

k
∼= Cn+1, this reduces to the bounding structure of (2.2).

3. Stably and almost complex structures

We write BO and BU respectively for the real and complex infinite Grassman-
nians and specify a realification map r : BU → BO. Let Nn be a smooth, closed
and connected manifold. We assume that the stable tangent bundle is represented
by a map τS(N) : Nn → BO, which we fix henceforth.

Definition 3.1. Let ξ be a real vector bundle over Nn. A complex structure
(respectively, a stably complex structure) on ξ is a specific bundle isomorphism
(resp. stable isomorphism) f : ξ → βR, where βR is the real bundle underlying some
complex vector bundle β over N .

Definition 3.2. A complex structure on τS(N), which is given by a lift τU to BU ,
is said to be a stably complex structure on Nn.

If τU and τ ′
U are two stably complex structures on Nn, we say that they are

equivalent (or homotopic), whenever they are homotopic through lifts of τS(N).
When τU is fixed, it leads to a complementary lift of the stable normal bundle
νS(N), and conversely; this correspondence preserves homotopy classes.

Similarly, a complex structure on the tangent bundle τ (N) of Nn is known as an
almost complex structure on Nn. When Nn is itself complex, it therefore admits
an associated almost complex structure, which in turn induces a canonical stably
complex structure. On the other hand, an arbitrary stably complex structure need
not restrict to τ (N), and an arbitrary almost complex structure need not arise from
any complex structure on Nn. For example, if we consider the toric manifolds CP

2

or the connected sum CP 2#CP 2, where CP
2

is obtained from CP 2 by reversing
its orientation, then neither CP

2
nor CP 2#CP 2 admit almost complex structures.

We note that from the fibration

(3.1) O/U
f−→ BU

r−→ BO,
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we can obtain the associated exact Bott sequence for Bn:
(3.2)

. . . → K̃O−1(Bn) → K̃O−2(Bn)
χ−→ K̃0(Bn) r−→ K̃O0(Bn) → K̃O7(Bn) → . . . ,

which links the real and complex K-theory through the realification homomorphism
r. Here, χ is induced by f and may be identified with z−1 · c by composing the
complexification homomorphism with multiplication by z−1, where K∗ = Z[z, z−1]
is the coefficient ring. We showed in [7] that the exact sequence (3.2) reduces to
the short exact sequence

(3.3) 0 → K̃O−2(Bn)
χ−→ K̃0(Bn) r−→ K̃O0(Bn) → 0,

and if Kn denotes the kernel of r : K̃0(Bn) → K̃O0(Bn), then the group Kn
∼=

K̃O−2(Bn) can be identified with the set of stably complex structures on Bn, since
χ is a monomorphism in this case [13].

Since the number of facets of În is equal to 2n, we have the possibility of choos-
ing 22n different omniorientations on Bn. However, two different omniorientations
on Bn may induce the same stably complex structure. Therefore, our aim now
is to find the number of different stably complex structures on Bn arising from
omniorientations.

We should first introduce some notation. We define
U(i, j⊥) := ηi ⊕ η⊥

j , D(i, j⊥) := ηi ⊕ η⊥
j ,

R(i, j⊥) := ηi ⊕ η⊥
j , L(i, j⊥) := ηi ⊕ η⊥

j ,

for any 1 ≤ i, j ≤ n. As a consequence of the isomorphisms ηi ⊕ η⊥
i
∼= ηi−1 ⊕ C for

all 1 ≤ i ≤ n , we have the following identities:

U(i, i⊥) ∼= U(i − 1, 0) = R(i − 1, 0),

D(i, i⊥) ∼= D(i − 1, 0) = L(i − 1, 0),

R(i, i⊥) ⊕ L(i, 0) ∼= L(i − 1, 0) ⊕ R(i, 0),

L(i, i⊥) ⊕ R(i, 0) ∼= R(i − 1, 0) ⊕ L(i, 0)

(3.4)

for 1 ≤ i ≤ n, where η0 denotes the trivial line bundle as before.

Proposition 3.3. Any stably complex structure on Bn arising from an omniori-
entation is of the form

(3.5) τ (Bn) ⊕ R
2n ∼=

n⊕
i=1

Xi(i, i⊥),

where Xi ∈ {U, D, R, L} for 1 ≤ i ≤ n.

Proof. Any omniorientation on Bn may be obtained from the dicharacteristic map
λ of (2.6) by changing the signs of some of the vectors λ(Ĉγ

k ), yielding the result. �

As we have already mentioned, some of these stably complex structures may
be equivalent so that they are represented by the same element in K(Bn). To
distinguish those that are not, we first construct a subset of those stably complex
structures on Bn described by Proposition 3.3. To do that, we define

∆U
i := {R(i − 1, 0), L(i − 1, 0), R(i, i⊥), L(i, i⊥)},

∆R
i := ∆U

i \{L(i − 1, 0)} and ∆L
i := ∆U

i \{R(i − 1, 0)}
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for any 1 ≤ i ≤ n. We note that U(1, 1⊥) ∼= D(1, 1⊥) ∼= R(0, 0) ∼= L(0, 0) ∼= C2.
Let Yn denote the set of n-tuples (Y1, . . . , Yn), where Yi ∈ ∆U

i and if Yi = R(i, i⊥),
then Yi+1 ∈ ∆R

i+1, and correspondingly, if Yi = L(i, i⊥), then Yi+1 ∈ ∆L
i+1 for

2 ≤ i ≤ n − 1.

Theorem 3.4. For each stably complex structure
⊕n

i=1 Xi(i, i⊥) on Bn, there exists
an n-tuple (Y1, . . . , Yn) in Yn such that

(3.6)
n⊕

i=1

Xi(i, i⊥) ∼=
n⊕

i=1

Yi.

Proof. We should mention that this is an isomorphism of complex vector bundles,
and it may be proven by induction on n with the help of identities (3.4). �

In fact, we will prove that the set Yn can be identified with the set of actual
stably complex structures arising from omniorientations. To see that, we need a
technical lemma.

Lemma 3.5. For any 1 ≤ i ≤ n, we have

(3.7) η̄⊥
i − η⊥

i = (η̄i−1 − ηi−1) + (ηi − η̄i)

in Kn.

Proof. From the isomorphism ηi ⊕ η⊥
i
∼= ηi−1 ⊕Cn−i+1, we see that the first Chern

class of η⊥
i is given by c1(ηi⊥) = c1(ηi−1) − c1(ηi). If we define µ⊥

i := η⊥
i −

1 ∈ K̃0(Bn), and apply the Chern character, we obtain that µ⊥
i = µi−1 − µi for

1 ≤ i ≤ n. Therefore,

η̄⊥
i − η⊥

i = µ̄⊥
i − µ⊥

i = µ̄i−1 − µ̄i − µi−1 + µi

= (µ̄i−1 − µi−1) + (µi − µ̄i) = (η̄i−1 − ηi−1) + (ηi − η̄i).

�

Now let us fix the stably complex structure

τ (Bn) ⊕ R
2n ∼=

n⊕
i=1

U(i, i⊥) ∼=
n−1⊕
i=1

R(i, 0) ⊕ C
2,

and write τF
n for its representative in K̃0(Bn). On the other hand, we denote the

class in K̃0(Bn) corresponding to the bundle
⊕n

i=1 Yi by τY for any (Y1, . . . , Yn) ∈
Yn.

Theorem 3.6. For any (Y1, . . . , Yn) ∈ Yn, there exists αY = (α1, . . . , αn) ∈ Zn

such that

(3.8) τY = τF
n + α1 · (η1 − η̄1) + . . . + αn · (ηn − η̄n).

Moreover, if (Y1, . . . , Yn) and (W1, . . . , Wn) are two different n-tuples in Yn, then
we have αY 
= αW .

Proof. Let (Y1, . . . , Yn) be given in Yn. We first need to show that there exist
integers αi

i−1 and αi
i such that

(3.9) ηi + η⊥
i + αi

i−1 · (ηi−1 − η̄i−1) + αi
i · (ηi − η̄i) = Yi
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for each 1 ≤ i ≤ n. However, the existence of such integers is obvious, and they are
given by

(αi
i−1, α

i
i) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 0), if Yi = R(i − 1, 0),
(−1, 0), if Yi = L(i − 1, 0),
(−1, 1), if Yi = R(i, i⊥),
(0,−1), if Yi = L(i, i⊥),

for 1 ≤ i ≤ n (see also Lemma 3.5). Then, the first assertion follows at once from
(3.9) if we define αi := αi

i + αi+1
i for 1 ≤ i ≤ n − 1 and αn = αn

n. For the second
one, we apply induction on n. �

Therefore, combining Theorems 3.4 and 3.6, we obtain that the actual set of
stably complex structures on Bn arising from omniorientations is indexed by the
elements of the set Yn. It is therefore natural to ask how many they are. To answer
such a question, we first need to bring the notion of “generating trees” into use.
Extensive material on the subject may be found in [16].

We claim that any element of the set Yn is indexed by a unique path in a
generating tree Λn, which may be described by the following succession rules:

Root : (a)

Rules : (a) → (a)(a)(b)

(b) → (a)(a)(b)(b).
(3.10)

Now, we label the bundles R(i, i⊥) and L(i, i⊥) by (a) for 1 ≤ i ≤ n, and corre-
spondingly, the bundles R(i, 0) and L(i, 0) have the same label (b) for any 0 ≤ i ≤ n.
In particular, we assume that the root, being in the zeroth level, is labeled by (a).
On the other hand, since we do not distinguish the labels of R(i, i⊥) and L(i, i⊥),
we have to insist that whenever a node in the i-th level is labeled by (a), then its
children should be from the set ∆R

i+1 or ∆L
i+1 according to whether (a) represents

R(i, i⊥) or L(i, i⊥). Therefore, the level-number (a)n gives the number of n-tuples
(Y1, . . . , Yn) in Yn for which Yn = R(n, n⊥) or L(n, n⊥), and similarly, (b)n gives
the number of such n-tuples with Yn = R(n − 1, 0) or L(n − 1, 0). Moreover, the
number of elements in Yn is given by Ln; that is, |Yn| = Ln.

Lemma 3.7. The nth level-numbers of the generating tree Λn are given as follows:

(a)n =
�n

2 �∑
i=0

(
n

2i

)
2n−i, (b)n =

�n
2 �∑

i=0

(
n

2i + 1

)
2n−i−1,

Ln =
�n

2 �∑
i=0

(
n + 1

2i

)
2n−i

(3.11)

for all n ≥ 1, where �x� is the greatest integer less than or equal to x and respec-
tively, 
x� is the least integer greater than or equal to x.

Proof. The transition matrix of Λn is given by

Tn :=
(

2 2
1 2

)
.
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Since the zeroth level-numbers are
(
1
0

)
, the nth level numbers of Λn are given by

the solution of the equation (
(a)n

(b)n

)
= (Tn)n ·

(
1
0

)
,

from which we obtain the result. �

Corollary 3.8. The number of stably complex structures on Bn arising from om-
niorientations equals Ln for any n ≥ 1.

Example 3.9. Consider the case when n = 2. Then, the number of stably complex
structures on B2 arising from omniorientations is equal to L2 = 10, and they are
given as follows:

C
2 ⊕ R(1, 0) = η1 ⊕ C

3,

C
2 ⊕ L(1, 0) = η̄1 ⊕ C

3,

C
2 ⊕ L(2, 2⊥) = η̄2 ⊕ η⊥

2 ⊕ C
2,

C
2 ⊕ R(2, 2⊥) = η2 ⊕ η̄⊥

2 ⊕ C
2,

R(1, 1⊥) ⊕ R(1, 0) = 2η1 ⊕ η̄⊥
1 ⊕ C,

L(1, 1⊥) ⊕ L(1, 0) = 2η̄1 ⊕ η⊥
1 ⊕ C,

L(1, 1⊥) ⊕ L(2, 2⊥) = η̄1 ⊕ η⊥
1 ⊕ η̄2 ⊕ η⊥

2 ,

R(1, 1⊥) ⊕ R(2, 2⊥) = η1 ⊕ η̄⊥
1 ⊕ η2 ⊕ η̄⊥

2 ,

L(1, 1⊥) ⊕ R(2, 2⊥) = η̄1 ⊕ η⊥
1 ⊕ η2 ⊕ η̄⊥

2 ,

R(1, 1⊥) ⊕ L(2, 2⊥) = η1 ⊕ η̄⊥
1 ⊕ η̄2 ⊕ η⊥

2 .

For the rest of this section, we will try to answer two separate questions. The
first question deals with the determination of those stably complex structures on
Bn induced by almost complex structures. We recall that in our restricted case, a
stably complex structure is induced by an almost complex structure if and only if
its top Chern class is equal to the Euler class of the manifold [15]. The second one
concerns cobordism calculations related to each class in ΩU

∗ determined by Bn with
a fixed stably complex structure arising from an omniorientation.

We first need to introduce some notation. Let YC
n denote a subset of Yn consisting

of n-tuples of the form (Y1, . . . , Yn) such that Yi is either R(i, i⊥) or L(i, i⊥) for
any 1 ≤ i ≤ n. The set YC

n corresponds to a sub-generating tree ΛC
n in Λn with the

succession rule:

Root : (a)

Rules : (a) → (a)(a),
(3.12)

and the number of elements in YC
n is clearly equal to 2n.

Definition 3.10. We say that an n-tuple (Y1, . . . , Yn) in YC
n has the binary repre-

sentation w = w1 . . . wn ∈ Sn if

Yk =

{
L(k, k⊥), if wk = 1,

R(k, k⊥), if wk = 0,
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for each 1 ≤ k ≤ n, where Sn denotes the set of binary words of length n on
S = {0, 1}. In this case, we sometimes call w = w1 . . . wn the binary representation
of the stably complex structure τn(Y ) :=

⊕n
k=1 Yk.

Example 3.11. Consider the n-tuple (L(1, 1⊥), . . . , L(n, n⊥)) in YC
n , and recall

that the tangent bundle of Bn considered as a complex manifold satisfies τ (Bn) ⊕
Cn ∼=

⊕n
k=1 L(k, k⊥) =: τn(L) (compare to (2.7)). Now, wL := 11 . . . 1 ∈ Sn is the

binary representation of the bundle τn(L).

In order to assist our cobordism calculations and decide which stably complex
structures among τn(Y ) are induced by almost complex structures, we next deter-
mine the top Chern class of τn(Y ), where (Y1, . . . , Yn) ∈ Yn. We recall that the first
Chern classes of the bundles ηi and η⊥

i are given by xi and xi−1 − xi respectively
for 1 ≤ i ≤ n, where x0 = 0.

Theorem 3.12. For any given n-tuple (Y1, . . . , Yn) in YC
n with the binary repre-

sentation w = w1 . . . wn, the top Chern class of τn(Y ) is cn(τn(Y )) = (−1)λn2nxn
n,

where λn := w1 + . . . + wn.

Proof. We first need to observe that

(3.13) cn(τn(Y )) = cn−1(τn−1(Y )) · c1(Yn),

where τk(Y ) :=
⊕k

l=1 Yl for any 1 ≤ k ≤ n,. To see that, let c(τn(Y )) denote the
total Chern class of τn(Y ). Then it follows that

c(τn(Y )) = c(Y1) · · · c(Yn−1) · c(Yn) = c(τn−1(Y )) · c(Yn).

On the other hand, we have c(R(k, k⊥)) = 1 − xk−1 + 2xk and c(L(k, k⊥)) =
1 + xk−1 − 2xk for any 1 ≤ k ≤ n. Therefore, we obtain c(τn(Y )) = c(τn−1(Y )) ·
(1 ± xn−1 ∓ 2xn); hence, (3.13) is obvious. We prove the claim by induction on
n. When n = 1, there is nothing to prove, since there are exactly two elements in YC

1

given by R(1, 1⊥) and L(1, 1⊥) with c1(R(1, 1⊥)) = 2x1 and c1(L(1, 1⊥)) = −2x1.
Suppose that the claim holds for some n > 1 and for all 1 ≤ k ≤ n. Let
(Y1, . . . , Yn+1) be any (n + 1)-tuple in YC

n+1 with the binary representation w =
w1 . . . wn+1. Without loss of generality, we may assume that Yn+1 =
L(n + 1, (n + 1)⊥) so that wn+1 = 1. Thus, we obtain by (3.13) and the induction
assumption that

cn+1(τn+1(Y )) = cn(τn(Y )) · c1(L(n + 1, (n + 1)⊥))

= ((−1)λn2nxn
n) · (xn − 2xn+1)

= (−1)λn+12n+1xn+1
n+1,

where xn+1
n = 0 and λn+1 = λn + 1 since wn+1 = 1. �

Example 3.13. Consider the element (L(1, 1⊥), R(2, 2⊥), R(3, 3⊥), L(4, 4⊥)) in
YC

4 . Its binary representation is given by w = 1001. To simplify the notation,
we may denote the corresponding bundle by τ4(Yw); that is,

τ4(Yw) := L(1, 1⊥) ⊕ R(2, 2⊥) ⊕ R(3, 3⊥) ⊕ L(4, 4⊥).

Then, applying Theorem 3.12, the top Chern class of τ4(Yw) is given by

c4(τ4(Yw)) = 16x4
4 = 16x1x2x3x4.
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Corollary 3.14. For any (Y1, . . . , Yn) ∈ Yn if (Y1, . . . , Yn) /∈ YC
n , then the top

Chern class of τn(Y ) is equal to zero.

Proof. Let (Y1, . . . , Yn) be such an n-tuple. Then, there exists at least one 1 ≤ i ≤ n
such that Yi = R(i−1, 0) or L(i−1, 0) with c(Yi) = 1+xi−1 or 1−xi−1 respectively.
It is easy to observe that, in the total Chern class of τn(Y ), there does not exist a
nonzero monomial of degree n. �
Theorem 3.15. A stably complex structure τn(Y ) =

⊕n
i=1 Yi on Bn is induced by

an almost complex structure if and only if (Y1, . . . , Yn) ∈ YC
n and λn ≡ n (mod 2)

for any n ≥ 1. Moreover, the number of such structures is equal to 2n−1.

Proof. Recall that when we consider Bn as a complex manifold, the tangent bundle
τ (Bn) satisfies τ (Bn) ⊕ Cn ∼=

⊕n
k=1 L(k, k⊥) = τn(L). Therefore, appealing to

Theorem 3.12, the Euler class of τ (Bn) is given by

e(τ (Bn)) = cn(τn(L)) = (−1)n2nxn
n.

On the other hand, the Euler characteristic of Bn is 2n; hence, the Kronecker prod-
uct 〈xn

n, κn〉 equals (−1)n, where κn ∈ H2n(Bn; Z) is the fundamental class of Bn in-

duced by Bn
τ(Bn)−−−−→ BU(n) → BSO(2n). Now, the stably complex structure τn(Y )

is induced by an almost complex structure if and only if cn(τn(Y )) = e(τ (Bn)).
Therefore, the claims follow from Corollary 3.14 and Theorem 3.12. �

We next move on to calculations in the complex cobordism ring ΩU
∗ determined

by Bn with a fixed stably complex structure of the form τn(Y ) for some (Y1, . . . , Yn)
in Yn. If (p1, . . . , pk) is a partition of n, we then write cp1 · · · cpk

[τn(Y )] for the
corresponding Chern number. It is well known that the Chern numbers of a stably
complex manifold determine the cobordism class .

We have already represented Bn with a bounding structure. We will prove that
it is not the only one with this property.

Let YB
n denote a subset of Yn consisting of (Y1, . . . , Yn) such that Yn is either

R(n − 1, 0) or L(n − 1, 0). The number of elements in YB
n is given by the level

number (b)n in Λn (see Lemma 3.7).

Theorem 3.16. The bounded flag manifold Bn with the stably complex structure
τn(Y ) represents zero in ΩU

∗ if and only if (Y1, . . . , Yn) ∈ YB
n .

Proof. Assume that (Y1, . . . , Yn) ∈ YB
n is given. It follows that the first Chern class

of Yn is either xn−1 or −xn−1. Therefore, none of the monomials in the total Chern
class of τn(Y ) contain xn as a factor, so that the product

cp1(τn(Y )) · · · cpk
(τn(Y ))

is zero in H2n(Bn; Z) for any partition (p1, . . . , pk) of n. Thus, the first asser-
tion follows. For the second one, if (Y1, . . . , Yn) /∈ YB

n , then we have at least
c1 · · · c1[τn(Y )] 
= 0. �
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