Finiteness conditions and infinite matrix rings
HTML articles powered by AMS MathViewer
- by Ángel del Río and Juan Jacobo Simón
- Proc. Amer. Math. Soc. 134 (2006), 1257-1263
- DOI: https://doi.org/10.1090/S0002-9939-05-08090-1
- Published electronically: October 4, 2005
- PDF | Request permission
Abstract:
For a unital ring $R$, $\mathrm {RCFM}_\alpha (R)$ denotes the ring of row and column finite matrices over $R$ indexed by $\alpha$. We give necessary and sufficient structural conditions on $\mathrm {RCFM}_\alpha (R)$ which are equivalent to $R$ being, respectively, Quasi-Frobenius, left artinian, and left noetherian.References
- Gene D. Abrams, Morita equivalence for rings with local units, Comm. Algebra 11 (1983), no. 8, 801–837. MR 695890, DOI 10.1080/00927878308822881
- Gene Abrams and Jeremy Haefner, Picard groups and infinite matrix rings, Trans. Amer. Math. Soc. 350 (1998), no. 7, 2737–2752. MR 1422591, DOI 10.1090/S0002-9947-98-01942-4
- P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), no. 1, 1–16. MR 899719, DOI 10.21099/tkbjm/1496160500
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223, DOI 10.1007/978-1-4684-9913-1
- P. Ara, E. Pardo, and F. Perera, The structure of countably generated projective modules over regular rings, J. Algebra 226 (2000), no. 1, 161–190. MR 1749882, DOI 10.1006/jabr.1999.8156
- G. M. Brodskiĭ, Endomorphism rings of free modules, Mat. Sb. (N.S.) 94(136) (1974), 226–242, 335 (Russian). MR 0349761
- Victor Camillo, F. J. Costa-Cano, and J. J. Simón, Relating properties of a ring and its ring of row and column finite matrices, J. Algebra 244 (2001), no. 2, 435–449. MR 1859035, DOI 10.1006/jabr.2001.8901
- Carl Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR 0427349, DOI 10.1007/978-3-642-65321-6
- Pere Menal, On the endomorphism ring of a free module, Publ. Sec. Mat. Univ. Autònoma Barcelona 27 (1983), no. 1, 141–154. MR 763863
- K. C. O’Meara, The exchange property for row and column-finite matrix rings, J. Algebra 268 (2003), no. 2, 744–749. MR 2009331, DOI 10.1016/S0021-8693(03)00266-7
- Donald Ornstein, Dual vector spaces, Ann. of Math. (2) 69 (1959), 520–534. MR 107153, DOI 10.2307/1970021
- S. A. Amitsur, D. J. Saltman, and G. B. Seligman (eds.), Algebraists’ homage: papers in ring theory and related topics, Contemporary Mathematics, vol. 13, American Mathematical Society, Providence, R.I., 1982. MR 685934
- R. Ware and J. Zelmanowitz, The Jacobson radical of the endomorphism ring of a projective module, Proc. Amer. Math. Soc. 26 (1970), 15–20. MR 262281, DOI 10.1090/S0002-9939-1970-0262281-8
Bibliographic Information
- Ángel del Río
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
- MR Author ID: 288713
- Email: adelrio@um.es
- Juan Jacobo Simón
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
- Email: jsimon@um.es
- Received by editor(s): September 2, 2004
- Received by editor(s) in revised form: November 19, 2004
- Published electronically: October 4, 2005
- Additional Notes: Both authors were partially supported by the D.G.I. of Spain and Fundación Séneca of Murcia
- Communicated by: Martin Lorenz
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 1257-1263
- MSC (2000): Primary 16S50; Secondary 16P20, 16P40
- DOI: https://doi.org/10.1090/S0002-9939-05-08090-1
- MathSciNet review: 2199167