Hardy’s theorem and rotations
HTML articles powered by AMS MathViewer
- by J. A. Hogan and J. D. Lakey
- Proc. Amer. Math. Soc. 134 (2006), 1459-1466
- DOI: https://doi.org/10.1090/S0002-9939-05-08098-6
- Published electronically: October 18, 2005
- PDF | Request permission
Abstract:
We prove an extension of Hardy’s classical characterization of real Gaussians of the form $e^{-\pi \alpha x^2}$, $\alpha >0$, to the case of complex Gaussians in which $\alpha$ is a complex number with positive real part. Such functions represent rotations in the complex plane of real Gaussians. A condition on the rate of decay of analytic extensions of a function $f$ and its Fourier transform $\widehat f$ along some pair of lines in the complex plane is shown to imply that $f$ is a complex Gaussian.References
- F. Astengo, M. Cowling, B. Di Blasio, and M. Sundari, Hardy’s uncertainty principle on certain Lie groups, J. London Math. Soc. (2) 62 (2000), no. 2, 461–472. MR 1783638, DOI 10.1112/S0024610700001186
- S. C. Bagchi and Swagato K. Ray, Uncertainty principles like Hardy’s theorem on some Lie groups, J. Austral. Math. Soc. Ser. A 65 (1998), no. 3, 289–302. MR 1660417, DOI 10.1017/S1446788700035886
- Aline Bonami, Bruno Demange, and Philippe Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana 19 (2003), no. 1, 23–55. MR 1993414, DOI 10.4171/RMI/337
- Michael G. Cowling and John F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984), no. 1, 151–165. MR 728691, DOI 10.1137/0515012
- M. Cowling, A. Sitaram, and M. Sundari, Hardy’s uncertainty principle on semisimple groups, Pacific J. Math. 192 (2000), no. 2, 293–296. MR 1744570, DOI 10.2140/pjm.2000.192.293
- Gerald B. Folland and Alladi Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238. MR 1448337, DOI 10.1007/BF02649110
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
- Karlheinz Gröchenig, Uncertainty principles for time-frequency representations, Advances in Gabor analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2003, pp. 11–30. MR 1955930
- Karlheinz Gröchenig and Georg Zimmermann, Hardy’s theorem and the short-time Fourier transform of Schwartz functions, J. London Math. Soc. (2) 63 (2001), no. 1, 205–214. MR 1802767, DOI 10.1112/S0024610700001800
- J. A. Hogan and J. D. Lakey, Embeddings and uncertainty principles for generalized modulation spaces, Modern sampling theory, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2001, pp. 73–105. MR 1865682
- J. A. Hogan and J. D. Lakey, Growth bounds for fractional Fourier transforms in Gelfand-Shilov spaces, Proc. ISAAC, Toronto, 2003.
- Lars Hörmander, A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat. 29 (1991), no. 2, 237–240. MR 1150375, DOI 10.1007/BF02384339
- A. J. E. M. Janssen and S. J. L. van Eijndhoven, Spaces of type $W$, growth of Hermite coefficients, Wigner distribution, and Bargmann transform, J. Math. Anal. Appl. 152 (1990), no. 2, 368–390. MR 1077934, DOI 10.1016/0022-247X(90)90071-M
- Bruce P. Palka, An introduction to complex function theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1991. MR 1078017, DOI 10.1007/978-1-4612-0975-1
- A. Sitaram and M. Sundari, An analogue of Hardy’s theorem for very rapidly decreasing functions on semi-simple Lie groups, Pacific J. Math. 177 (1997), no. 1, 187–200. MR 1444779, DOI 10.2140/pjm.1997.177.187
- A. Sitaram, M. Sundari, and S. Thangavelu, Uncertainty principles on certain Lie groups, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), no. 2, 135–151. MR 1350473, DOI 10.1007/BF02880360
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- M. Sundari, Hardy’s theorem for the $n$-dimensional Euclidean motion group, Proc. Amer. Math. Soc. 126 (1998), no. 4, 1199–1204. MR 1423336, DOI 10.1090/S0002-9939-98-04144-6
- Sundaram Thangavelu, Harmonic analysis on the Heisenberg group, Progress in Mathematics, vol. 159, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1633042, DOI 10.1007/978-1-4612-1772-5
Bibliographic Information
- J. A. Hogan
- Affiliation: Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701
- Email: jeffh@uark.edu
- J. D. Lakey
- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003–8001
- Email: jlakey@nmsu.edu
- Received by editor(s): September 24, 2004
- Received by editor(s) in revised form: December 20, 2004
- Published electronically: October 18, 2005
- Additional Notes: This research was supported by a Macquarie University MURG grant
- Communicated by: Juha M. Heinonen
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 1459-1466
- MSC (2000): Primary 42A38; Secondary 30D15
- DOI: https://doi.org/10.1090/S0002-9939-05-08098-6
- MathSciNet review: 2199193