Elliptic operators on planar graphs: Unique continuation for eigenfunctions and nonpositive curvature
HTML articles powered by AMS MathViewer
- by Steffen Klassert, Daniel Lenz, Norbert Peyerimhoff and Peter Stollmann
- Proc. Amer. Math. Soc. 134 (2006), 1549-1559
- DOI: https://doi.org/10.1090/S0002-9939-05-08103-7
- Published electronically: October 25, 2005
- PDF | Request permission
Abstract:
This paper is concerned with elliptic operators on plane tessellations. We show that such an operator does not admit a compactly supported eigenfunction if the combinatorial curvature of the tessellation is nonpositive. Furthermore, we show that the only geometrically finite, repetitive plane tessellations with nonpositive curvature are the regular $(3,6), (4,4)$ and $(6,3)$ tilings.References
- Shmuel Agmon, Lower bounds for solutions of Schrödinger equations, J. Analyse Math. 23 (1970), 1–25. MR 276624, DOI 10.1007/BF02795485
- W. O. Amrein, A.-M. Berthier, and V. Georgescu, $L^{p}$-inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, vii, 153–168 (English, with French summary). MR 638622, DOI 10.5802/aif.843
- N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR 92067
- O. Baues and N. Peyerimhoff, Curvature and geometry of tessellating plane graphs, Discrete Comput. Geom. 25 (2001), no. 1, 141–159. MR 1797301, DOI 10.1007/s004540010076
- O. Baues, N. Peyerimhoff, Geodesics in Non-Positively Curved Plane Tessellations, preprint, see http://www.math.ethz.ch/ oliver/
- Yves Colin de Verdière, Spectres de graphes, Cours Spécialisés [Specialized Courses], vol. 4, Société Mathématique de France, Paris, 1998 (French, with English and French summaries). MR 1652692
- François Delyon and Bernard Souillard, Remark on the continuity of the density of states of ergodic finite difference operators, Comm. Math. Phys. 94 (1984), no. 2, 289–291. MR 761798, DOI 10.1007/BF01209306
- Józef Dodziuk, Peter Linnell, Varghese Mathai, Thomas Schick, and Stuart Yates, Approximating $L^2$-invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (2003), no. 7, 839–873. Dedicated to the memory of Jürgen K. Moser. MR 1990479, DOI 10.1002/cpa.10076
- Branko Grünbaum and G. C. Shephard, Tilings and patterns, W. H. Freeman and Company, New York, 1987. MR 857454
- Lars Hörmander, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations 8 (1983), no. 1, 21–64. MR 686819, DOI 10.1080/03605308308820262
- David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494. With an appendix by E. M. Stein. MR 794370, DOI 10.2307/1971205
- Steffen Klassert, Daniel Lenz, and Peter Stollmann, Discontinuities of the integrated density of states for random operators on Delone sets, Comm. Math. Phys. 241 (2003), no. 2-3, 235–243. MR 2013799, DOI 10.1007/s00220-003-0920-7
- I. Veselić, Spectral analysis of percolation Hamiltonians, to appear in: Mathematische Annalen.
Bibliographic Information
- Steffen Klassert
- Affiliation: Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
- Email: S.Klassert@mathematik.tu-chemnitz.de
- Daniel Lenz
- Affiliation: Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
- MR Author ID: 656508
- Email: D.Lenz@mathematik.tu-chemnitz.de
- Norbert Peyerimhoff
- Affiliation: Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE, England
- MR Author ID: 290247
- Email: norbert.peyerimhoff@durham.ac.uk
- Peter Stollmann
- Affiliation: Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
- MR Author ID: 224163
- Email: P.Stollmann@mathematik.tu-chemnitz.de
- Received by editor(s): December 24, 2004
- Published electronically: October 25, 2005
- Communicated by: Jozef Dodziuk
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 1549-1559
- MSC (2000): Primary 58J50, 35J10; Secondary 81Q10
- DOI: https://doi.org/10.1090/S0002-9939-05-08103-7
- MathSciNet review: 2199204