The amenability constant of the Fourier algebra
HTML articles powered by AMS MathViewer
- by Volker Runde
- Proc. Amer. Math. Soc. 134 (2006), 1473-1481
- DOI: https://doi.org/10.1090/S0002-9939-05-08164-5
- Published electronically: October 18, 2005
- PDF | Request permission
Abstract:
For a locally compact group $G$, let $A(G)$ denote its Fourier algebra and $\hat {G}$ its dual object, i.e., the collection of equivalence classes of unitary representations of $G$. We show that the amenability constant of $A(G)$ is less than or equal to $\sup \{ \deg (\pi ) : \pi \in \hat {G} \}$ and that it is equal to one if and only if $G$ is abelian.References
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753
- Michel Enock and Jean-Marie Schwartz, Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992. With a preface by Alain Connes; With a postface by Adrian Ocneanu. MR 1215933, DOI 10.1007/978-3-662-02813-1
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- B. Forrest, E. Kaniuth, A. T. Lau, and N. Spronk, Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal. 203 (2003), no. 1, 286–304. MR 1996874, DOI 10.1016/S0022-1236(02)00121-0
- B. E. Forrest and V. Runde, Amenability and weak amenability of the Fourier algebra. Math. Z. 250 (2005), 731–744.
- Brian Forrest and Peter Wood, Cohomology and the operator space structure of the Fourier algebra and its second dual, Indiana Univ. Math. J. 50 (2001), no. 3, 1217–1240. MR 1871354, DOI 10.1512/iumj.2001.50.1835
- U. Haagerup, All nuclear $C^{\ast }$-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305–319. MR 723220, DOI 10.1007/BF01394319
- B. Host, Le théorème des idempotents dans $B(G)$, Bull. Soc. Math. France 114 (1986), no. 2, 215–223 (French, with English summary). MR 860817, DOI 10.24033/bsmf.2055
- Monica Ilie and Nico Spronk, Completely bounded homomorphisms of the Fourier algebras, J. Funct. Anal. 225 (2005), no. 2, 480–499. MR 2152508, DOI 10.1016/j.jfa.2004.11.011
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR 0374934
- B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685–698. MR 317050, DOI 10.2307/2373751
- B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. (2) 50 (1994), no. 2, 361–374. MR 1291743, DOI 10.1112/jlms/50.2.361
- A. T.-M. Lau, R. J. Loy, and G. A. Willis, Amenability of Banach and $C^*$-algebras on locally compact groups, Studia Math. 119 (1996), no. 2, 161–178. MR 1391474
- Horst Leptin, Sur l’algèbre de Fourier d’un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180–A1182 (French). MR 239002
- Viktor Losert, On tensor products of Fourier algebras, Arch. Math. (Basel) 43 (1984), no. 4, 370–372. MR 802314, DOI 10.1007/BF01196662
- Calvin C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. MR 302817, DOI 10.1090/S0002-9947-1972-0302817-8
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- Zhong-Jin Ruan, The operator amenability of $A(G)$, Amer. J. Math. 117 (1995), no. 6, 1449–1474. MR 1363075, DOI 10.2307/2375026
- Volker Runde, Lectures on amenability, Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. MR 1874893, DOI 10.1007/b82937
- Sadahiro Saeki, On norms of idempotent measures, Proc. Amer. Math. Soc. 19 (1968), 600–602. MR 225102, DOI 10.1090/S0002-9939-1968-0225102-6
- Ross Stokke, Approximate diagonals and Følner conditions for amenable group and semigroup algebras, Studia Math. 164 (2004), no. 2, 139–159. MR 2079635, DOI 10.4064/sm164-2-3
- Elmar Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I, Invent. Math. 6 (1968), 190–196 (German). MR 248288, DOI 10.1007/BF01404824
Bibliographic Information
- Volker Runde
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: vrunde@ualberta.ca
- Received by editor(s): September 27, 2004
- Received by editor(s) in revised form: December 21, 2004
- Published electronically: October 18, 2005
- Additional Notes: This research was supported by NSERC under grant no. 227043-04
- Communicated by: David R. Larson
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 1473-1481
- MSC (2000): Primary 46H20; Secondary 20B99, 22D05, 22D10, 43A40, 46J10, 46J40, 46L07, 47L25, 47L50
- DOI: https://doi.org/10.1090/S0002-9939-05-08164-5
- MathSciNet review: 2199195