Sobolev spaces and the Cayley transform
HTML articles powered by AMS MathViewer
- by Francesca Astengo and Bianca Di Blasio
- Proc. Amer. Math. Soc. 134 (2006), 1319-1329
- DOI: https://doi.org/10.1090/S0002-9939-05-08278-X
- Published electronically: October 4, 2005
- PDF | Request permission
Abstract:
The generalised Cayley transform $\mathcal {C}$ from an Iwasawa $N$-group into the corresponding real unit sphere $\mathbb {S}$ induces isomorphisms between suitable Sobolev spaces $\mathcal {H}^\alpha (\mathbb {S})$ and $\mathcal {H}^\alpha (N)$. We study the differential of $\mathcal {C}$, and we obtain a criterion for a function to be in $\mathcal {H}^\alpha (\mathbb {S})$.References
- F. Astengo, M. Cowling, and B. Di Blasio, The Cayley transform and uniformly bounded representations, J. Funct. Anal. 213 (2004), no. 2, 241–269. MR 2078626, DOI 10.1016/j.jfa.2003.12.009
- Adrian D. Banner, Some properties of boundaries of symmetric spaces of rank one, Geom. Dedicata 88 (2001), no. 1-3, 113–133. MR 1877212, DOI 10.1023/A:1013194315182
- Michael Cowling, Unitary and uniformly bounded representations of some simple Lie groups, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 49–128. MR 777340
- Michael Cowling, Anthony H. Dooley, Adam Korányi, and Fulvio Ricci, $H$-type groups and Iwasawa decompositions, Adv. Math. 87 (1991), no. 1, 1–41. MR 1102963, DOI 10.1016/0001-8708(91)90060-K
- Michael Cowling, Anthony Dooley, Adam Korányi, and Fulvio Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal. 8 (1998), no. 2, 199–237. MR 1705176, DOI 10.1007/BF02921641
- Jacek Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), no. 1, 69–70. MR 619983, DOI 10.1090/S0002-9939-1981-0619983-8
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- Daryl Geller, The Laplacian and the Kohn Laplacian for the sphere, J. Differential Geometry 15 (1980), no. 3, 417–435 (1981). MR 620896
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Aroldo Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), no. 1, 147–153. MR 554324, DOI 10.1090/S0002-9947-1980-0554324-X
- A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), no. 2, 309–338. MR 788413, DOI 10.1007/BF01388609
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI 10.2307/1971484
Bibliographic Information
- Francesca Astengo
- Affiliation: Dipartimento di Matematica, Università di Genova, 16146 Genova, Italia
- Email: astengo@dima.unige.it
- Bianca Di Blasio
- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, 00133 Roma, Italia
- Email: diblasio@mat.uniroma2.it
- Received by editor(s): November 18, 2004
- Published electronically: October 4, 2005
- Additional Notes: The authors thank the School of Mathematics of the University of the New South Wales and the Italian G.N.A.M.P.A. for their support
- Communicated by: Andreas Seeger
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 134 (2006), 1319-1329
- MSC (2000): Primary 43A80; Secondary 43A85, 43A15
- DOI: https://doi.org/10.1090/S0002-9939-05-08278-X
- MathSciNet review: 2199175