On quasi-complete intersections of codimension $2$
HTML articles powered by AMS MathViewer
- by Youngook Choi
- Proc. Amer. Math. Soc. 134 (2006), 1249-1256
- DOI: https://doi.org/10.1090/S0002-9939-05-08425-X
- Published electronically: December 14, 2005
- PDF | Request permission
Abstract:
In this paper, we prove that if $X\subset \mathbb {P}^n$, $n\ge 4$, is a locally complete intersection of pure codimension $2$ and defined scheme-theoretically by three hypersurfaces of degrees $d_1\ge d_2\ge d_3$, then $H^1(\mathbb {P}^n,\mathcal {I}_X(j))=0$ for $j<d_3$ using liaison theory and the Arapura vanishing theorem for singular varieties. As a corollary, a smooth threefold $X\subset \mathbb {P}^5$ is projectively normal if $X$ is defined by three quintic hypersurfaces.References
- Donu Arapura and David B. Jaffe, On Kodaira vanishing for singular varieties, Proc. Amer. Math. Soc. 105 (1989), no. 4, 911–916. MR 952313, DOI 10.1090/S0002-9939-1989-0952313-8
- Alf Aure, Wolfram Decker, Klaus Hulek, Sorin Popescu, and Kristian Ranestad, Syzygies of abelian and bielliptic surfaces in $\textbf {P}^4$, Internat. J. Math. 8 (1997), no. 7, 849–919. MR 1482969, DOI 10.1142/S0129167X97000421
- V. Beorchia and Ph. Ellia, On the equations defining quasicomplete intersection space curves, Arch. Math. (Basel) 70 (1998), no. 3, 244–249. MR 1604080, DOI 10.1007/s000130050191
- Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3, 587–602. MR 1092845, DOI 10.1090/S0894-0347-1991-1092845-5
- H. Bresinsky, P. Schenzel, and J. Stückrad, Quasi-complete intersection ideals of height $2$, J. Pure Appl. Algebra 127 (1998), no. 2, 137–145. MR 1620704, DOI 10.1016/S0022-4049(97)00085-6
- Youngook Choi and Sijong Kwak, Remarks on the defining equations of smooth threefolds in $\Bbb P^5$, Geom. Dedicata 96 (2003), 151–159. MR 1956837, DOI 10.1023/A:1022133506844
- Wolfram Decker and Sorin Popescu, On surfaces in $\textbf {P}^4$ and $3$-folds in $\textbf {P}^5$, Vector bundles in algebraic geometry (Durham, 1993) London Math. Soc. Lecture Note Ser., vol. 208, Cambridge Univ. Press, Cambridge, 1995, pp. 69–100. MR 1338413, DOI 10.1017/CBO9780511569319.004
- Lawrence Ein and Robert Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension, Invent. Math. 111 (1993), no. 1, 51–67. MR 1193597, DOI 10.1007/BF01231279
- Gerd Faltings, Ein Kriterium für vollständige Durchschnitte, Invent. Math. 62 (1981), no. 3, 393–401 (German). MR 604835, DOI 10.1007/BF01394251
- Davide Franco, Steven L. Kleiman, and Alexandru T. Lascu, Gherardelli linkage and complete intersections, Michigan Math. J. 48 (2000), 271–279. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786490, DOI 10.1307/mmj/1030132718
- Mario Fiorentini and Alexandru T. Lascu, A criterion for quasicomplete intersections and related embedding questions, Ann. Univ. Ferrara Sez. VII (N.S.) 28 (1982), 153–166 (1983) (English, with Italian summary). MR 701894
- G. Horrocks and D. Mumford, A rank $2$ vector bundle on $\textbf {P}^{4}$ with $15,000$ symmetries, Topology 12 (1973), 63–81. MR 382279, DOI 10.1016/0040-9383(73)90022-0
- Si-Jong Kwak, Castelnuovo-Mumford regularity bound for smooth threefolds in $\textbf {P}^5$ and extremal examples, J. Reine Angew. Math. 509 (1999), 21–34. MR 1679165, DOI 10.1515/crll.1999.040
- N. Mohan Kumar, Chris Peterson, and A. Prabhakar Rao, Monads on projective spaces, Manuscripta Math. 112 (2003), no. 2, 183–189. MR 2064915, DOI 10.1007/s00229-003-0389-x
- Juan C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1712469, DOI 10.1007/978-1-4612-1794-7
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
Bibliographic Information
- Youngook Choi
- Affiliation: Department of Mathematics, Korea Advanced Institute of Science and Technology, 373-1 Gusung-dong Yusung-gu, Daejeon, Korea
- MR Author ID: 709698
- Email: ychoi@math.kaist.ac.kr
- Received by editor(s): September 10, 2004
- Published electronically: December 14, 2005
- Additional Notes: The author was supported in part by KRF (grant No. KRF-2002-070-C00003)
- Communicated by: Bernd Ulrich
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 1249-1256
- MSC (2000): Primary 14M07, 14N05, 14M06
- DOI: https://doi.org/10.1090/S0002-9939-05-08425-X
- MathSciNet review: 2199166