Fractional powers of the algebraic sum of normal operators
HTML articles powered by AMS MathViewer
- by Toka Diagana
- Proc. Amer. Math. Soc. 134 (2006), 1777-1782
- DOI: https://doi.org/10.1090/S0002-9939-05-08183-9
- Published electronically: December 15, 2005
- PDF | Request permission
Abstract:
The main concern in this paper is to give sufficient conditions such that if $A, B$ are unbounded normal operators on a (complex) Hilbert space $\mathbb H$, then for each $\alpha \in (0 , 1)$, the domain $D((\overline {A+B})^{\alpha })$ equals $D(A^{\alpha }) \cap D(B^{\alpha })$. It is then verified that such a result can be applied to characterize the domains of fractional powers of a large class of the Hamiltonians with singular potentials arising in quantum mechanics through the study of the Schrödinger equation.References
- António de Bivar-Weinholtz and Michel L. Lapidus, Product formula for resolvents of normal operators and the modified Feynman integral, Proc. Amer. Math. Soc. 110 (1990), no. 2, 449–460. MR 1013964, DOI 10.1090/S0002-9939-1990-1013964-6
- Haïm Brézis and Tosio Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. (9) 58 (1979), no. 2, 137–151. MR 539217
- Tocka Diagana, Sommes d’opérateurs et conjecture de Kato-McIntosh, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 461–464 (French, with English and French summaries). MR 1756959, DOI 10.1016/S0764-4442(00)00200-7
- Toka Diagana, Variational sum and Kato’s conjecture, J. Convex Anal. 9 (2002), no. 1, 291–294. MR 1917402
- Tocka Diagana, Quelques remarques sur l’opérateur de Schrödinger avec un potential complexe singulier particulier, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 2, 293–298 (French, with French summary). MR 2017083
- Toka Diagana, Algebraic sum of unbounded normal operators and the square root problem of Kato, Rend. Sem. Mat. Univ. Padova 110 (2003), 269–275. MR 2033011
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Tosio Kato, Fractional powers of dissipative operators. II, J. Math. Soc. Japan 14 (1962), 242–248. MR 151868, DOI 10.2969/jmsj/01420242
- J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.) 2(50) (1958), 419–432 (French). MR 151829
- J.-L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan 14 (1962), 233–241 (French). MR 152878, DOI 10.2969/jmsj/01420233
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Atsushi Yagi, Coïncidence entre des espaces d’interpolation et des domaines de puissances fractionnaires d’opérateurs, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 6, 173–176 (French, with English summary). MR 759225
Bibliographic Information
- Toka Diagana
- Affiliation: Department of Mathematics, Howard University, 2441 6th Street N.W., Washington D.C. 20059
- MR Author ID: 662718
- Email: tdiagana@howard.edu
- Received by editor(s): July 12, 2004
- Received by editor(s) in revised form: January 31, 2005
- Published electronically: December 15, 2005
- Communicated by: Joseph A. Ball
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 134 (2006), 1777-1782
- MSC (2000): Primary 47B44, 47B25, 47B15
- DOI: https://doi.org/10.1090/S0002-9939-05-08183-9
- MathSciNet review: 2207493