A short proof of the Zeilberger-Bressoud $q$-Dyson theorem
HTML articles powered by AMS MathViewer
- by Ira M. Gessel and Guoce Xin
- Proc. Amer. Math. Soc. 134 (2006), 2179-2187
- DOI: https://doi.org/10.1090/S0002-9939-06-08224-4
- Published electronically: March 14, 2006
- PDF | Request permission
Abstract:
We give a formal Laurent series proof of Andrews’s $q$-Dyson Conjecture, first proved by Zeilberger and Bressoud.References
- George E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 191–224. MR 0399528
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- D. M. Bressoud and I. P. Goulden, Constant term identities extending the $q$-Dyson theorem, Trans. Amer. Math. Soc. 291 (1985), no. 1, 203–228. MR 797055, DOI 10.1090/S0002-9947-1985-0797055-8
- Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI 10.2307/2118632
- I. J. Good, Short proof of a conjecture by Dyson, J. Mathematical Phys. 11 (1970), 1884. MR 258644, DOI 10.1063/1.1665339
- J. Gunson, Proof of a conjecture by Dyson in the statistical theory of energy levels, J. Mathematical Phys. 3 (1962), 752–753. MR 148401, DOI 10.1063/1.1724277
- Kevin W. J. Kadell, A proof of Andrews’ $q$-Dyson conjecture for $n=4$, Trans. Amer. Math. Soc. 290 (1985), no. 1, 127–144. MR 787958, DOI 10.1090/S0002-9947-1985-0787958-2
- I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13 (1982), no. 6, 988–1007. MR 674768, DOI 10.1137/0513070
- Richard P. Stanley, The $q$-Dyson conjecture, generalized exponents, and the internal product of Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 81–94. MR 777696, DOI 10.1090/conm/034/777696
- Richard P. Stanley, The stable behavior of some characters of $\textrm {SL}(n,\textbf {C})$, Linear and Multilinear Algebra 16 (1984), no. 1-4, 3–27. MR 768993, DOI 10.1080/03081088408817606
- John R. Stembridge, A short proof of Macdonald’s conjecture for the root systems of type $A$, Proc. Amer. Math. Soc. 102 (1988), no. 4, 777–786. MR 934842, DOI 10.1090/S0002-9939-1988-0934842-5
- Kenneth G. Wilson, Proof of a conjecture by Dyson, J. Mathematical Phys. 3 (1962), 1040–1043. MR 144627, DOI 10.1063/1.1724291
- Guoce Xin, A residue theorem for Malcev-Neumann series, Adv. in Appl. Math. 35 (2005), no. 3, 271–293. MR 2164920, DOI 10.1016/j.aam.2005.02.004
- Guoce Xin, A fast algorithm for MacMahon’s partition analysis, Electron. J. Combin. 11 (2004), no. 1, Research Paper 58, 20. MR 2097324, DOI 10.37236/1811
- Doron Zeilberger, Proof of a conjecture of Chan, Robbins, and Yuen, Electron. Trans. Numer. Anal. 9 (1999), 147–148. Orthogonal polynomials: numerical and symbolic algorithms (Leganés, 1998). MR 1749805
- Doron Zeilberger and David M. Bressoud, A proof of Andrews’ $q$-Dyson conjecture, Discrete Math. 54 (1985), no. 2, 201–224. MR 791661, DOI 10.1016/0012-365X(85)90081-0
Bibliographic Information
- Ira M. Gessel
- Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02454-9110
- MR Author ID: 72865
- ORCID: 0000-0003-1061-5095
- Email: gessel@brandeis.edu
- Guoce Xin
- Affiliation: Department of Mathematics, Brandeis University, Waltham Massachusetts 02454-9110
- MR Author ID: 735352
- Email: guoce.xin@gmail.com
- Received by editor(s): December 21, 2004
- Received by editor(s) in revised form: February 12, 2005
- Published electronically: March 14, 2006
- Additional Notes: The first author was partially supported by NSF Grant DMS-0200596.
- Communicated by: John R. Stembridge
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 2179-2187
- MSC (2000): Primary 05A30; Secondary 33D70
- DOI: https://doi.org/10.1090/S0002-9939-06-08224-4
- MathSciNet review: 2213689