Traces and Sobolev extension domains
HTML articles powered by AMS MathViewer
- by Petteri Harjulehto
- Proc. Amer. Math. Soc. 134 (2006), 2373-2382
- DOI: https://doi.org/10.1090/S0002-9939-06-08228-1
- Published electronically: February 8, 2006
- PDF | Request permission
Abstract:
Assume that $\Omega \subset {\mathbb {R}^n}$ is a bounded domain and its boundary $\partial \Omega$ is $m$-regular, $n-1 \le m <n$. We show that if there exists a bounded trace operator $T:W^{1,p}(\Omega ) \to B^{p}_{1-\alpha }(\partial \Omega )$, $1<p<\infty$ and $\alpha = \tfrac {n-m}{p}$, and $(1-\lambda )$-Hölder continuous functions are dense in $W^{1,p}(\Omega )$, $0\le \lambda < n-m$, then the domain $\Omega$ is a $W^{1,p}$-extension domain.References
- Piotr Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403–415. MR 1401074, DOI 10.1007/BF00275475
- Piotr Hajłasz and Olli Martio, Traces of Sobolev functions on fractal type sets and characterization of extension domains, J. Funct. Anal. 143 (1997), no. 1, 221–246. MR 1428124, DOI 10.1006/jfan.1996.2959
- David A. Herron and Pekka Koskela, Uniform, Sobolev extension and quasiconformal circle domains, J. Anal. Math. 57 (1991), 172–202. MR 1191746, DOI 10.1007/BF03041069
- A. Jonsson, The trace of potentials on general sets, Ark. Mat. 17 (1979), no. 1, 1–18. MR 543499, DOI 10.1007/BF02385453
- A. Jonsson and H. Wallin, A Whitney extension theorem in $L_{p}$ and Besov spaces, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 1, vi, 139–192 (English, with French summary). MR 500920
- Alf Jonsson and Hans Wallin, Function spaces on subsets of $\textbf {R}^n$, Math. Rep. 2 (1984), no. 1, xiv+221. MR 820626
- Pekka Koskela, Capacity extension domains, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 73 (1990), 42. Dissertation, University of Jyväskylä, Jyväskylä, 1990. MR 1039115
- Alois Kufner, Oldřich John, and Svatopluk Fučík, Function spaces, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leyden; Academia, Prague, 1977. MR 0482102
- A. S. Romanov, On a generalization of Sobolev spaces, Sibirsk. Mat. Zh. 39 (1998), no. 4, 949–953, iv (Russian, with Russian summary); English transl., Siberian Math. J. 39 (1998), no. 4, 821–824. MR 1654102, DOI 10.1007/BF02673063
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Hans Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math. 73 (1991), no. 2, 117–125. MR 1128682, DOI 10.1007/BF02567633
Bibliographic Information
- Petteri Harjulehto
- Affiliation: Department of Mathematics and Statistics, P.O. Box 68 (Gustav Hällströmin katu 2B), FIN-00014 University of Helsinki, Finland
- Email: petteri.harjulehto@helsinki.fi
- Received by editor(s): October 26, 2000
- Received by editor(s) in revised form: March 10, 2005
- Published electronically: February 8, 2006
- Communicated by: David Preiss
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 2373-2382
- MSC (2000): Primary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-06-08228-1
- MathSciNet review: 2213711