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JAN J. DIJKSTRA AND JAN VAN MILL

(Communicated by N. Tomczak-Jaegermann)

Abstract. We present a weakly closed, one-dimensional, line-free subgroup
of the separable Banach space c that is not homeomorphic to complete Erdős
space. The existence of this example disproves a conjecture of Dobrowolski,
Grabowski, and Kawamura.

Complete Erdős space was first featured by Erdős in [8], who proved that it is
totally disconnected and one-dimensional. It can be represented by, for instance,

Ec = {z ∈ �2 : zi ∈ R \ Q for each i ∈ N},
where �2 is the Hilbert space of square summable real sequences. Ec is a universal
element of the class of almost zero-dimensional spaces; for background information
see [11, 9, 3, 4, 5]. A subset of a topological space is called a C-set if it can be
written as an intersection of clopen subsets of the space. A topological space is
called almost zero-dimensional if every point has a neighbourhood basis consisting
of C-sets. Every almost zero-dimensional space is at most one-dimensional; see
[11, 10, 1].

An additive subgroup of a vector space is called line-free if it does not contain
nontrivial linear subspaces. It is remarked in [2] that a topological classification
of the line-free closed subgroups of Banach spaces produces a classification of all
closed subgroups of Banach spaces. Let G be an arbitrary nondiscrete, weakly
closed, line-free, additive subgroup of a separable Banach space E. Dobrowolski,
Grabowski, and Kawamura [7] proved that G is homeomorphic to complete Erdős
space whenever E is reflexive. In addition, Ancel, Dobrowolski, and Grabowski [2]
showed that E contains zero-dimensional examples of such groups G precisely if E
contains an isomorphic copy of c0. These results prompted Dobrowolski, Grabowski,
and Kawamura [7] to formulate the following

Conjecture. Every separable, nondiscrete, weakly closed, one-dimensional, line-
free subgroup of a Banach space is homeomorphic to Ec.

We present a counterexample to this conjecture, thereby finding a new topo-
logical type that closed subgroups of Banach spaces can have. We shall distin-
guish our example from Ec by the following property of Ec. A topological space
is called somewhere zero-dimensional if it contains a point at which the space is
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zero-dimensional, that is, the point has a clopen neighbourhood basis. Dijkstra,
van Mill, and Steprāns [6] have shown that Ec has the property that every point
x ∈ Ec has a neighbourhood U such that every closed subset of U is either empty
or somewhere zero-dimensional.

Counterexample. We construct our counterexample in the Banach space c. We
find it convenient to represent c as the space of all continuous real-valued functions
f on the convergent sequence {0} ∪ {1/n : n ∈ N}. The norm ‖f‖ = sup{|f(1/n)| :
n ∈ N} makes c a separable Banach space. For n ∈ N let ϕn be the element of the
dual of c that is given by ϕn(f) = 2nf(1/n). Since {ϕn : n ∈ N} is clearly a total
sequence of functionals, we have that

G = {f ∈ c : ϕn(f) ∈ Z for each n ∈ N}
is a line-free, weakly closed, additive subgroup of c. We first verify that G is
almost zero-dimensional and hence that dim G ≤ 1. Consider an arbitrary closed
ε-ball Bε(f) = {g ∈ c : ‖g − f‖ ≤ ε} in c. Let g ∈ G \ Bε(f) and note that
|g(1/n) − f(1/n)| > ε for some n ∈ N. Then {h ∈ G : h(1/n) = g(1/n)} is an
obviously clopen subset of G that is disjoint from Bε(f). Thus G∩Bε(f) is a C-set
in G, proving the almost zero-dimensionality of G. The fact dim G ≤ 1 also follows
from [2, Theorem 3.1], when we note that the ϕn’s form a norming sequence; see
Dijkstra and van Mill [5, Remark 30].

We shall now show with the method of Erdős [8] that for each ε > 0 the set
A = G ∩ Bε(0), where 0 stands for the zero function, is not zero-dimensional at
each of its points. We may then conclude that dim G ≥ 1 and that G is not
homeomorphic to Ec. (However, according to [4, Propositions 6.3 and 6.10] G is
homeomorphic to a dense subset of Ec.) Let f ∈ A be arbitrary. Since A = −A we
may assume that f(0) ≤ 0. Let U be a subset of A∩Bε/3(f) such that f ∈ U . We
show that U has boundary points in A. For each n ∈ N we let αn ∈ G be defined by
αn(x) = 2−n for x ≤ 1/n and αn = 0 for x > 1/n. Note that ‖αn‖ = αn(0) = 2−n.
We construct by recursion a sequence g1, g2, g3, . . . in U as follows. We put g1 = f .
Assume that gn−1 has been found. Since U is bounded and gn−1 ∈ U , there is a
k ∈ {0} ∪ N such that

gn−1 + kαn ∈ U and gn−1 + (k + 1)αn /∈ U.

Defining gn = gn−1 + kαn we trivially have the following properties:
(1) gn ≥ gn−1,
(2) gn + αn ∈ G \ U , and
(3) ‖gn − gn−1‖ = gn(0) − gn−1(0).

Since the sequence g1(0), g2(0), . . . is nondecreasing and bounded by ε, we have
that it converges, say, to L. By property (3) we have

∑∞
n=1 ‖gn+1−gn‖ = L−g1(0),

thus g1, g2, . . . is a Cauchy sequence. Put g = limn→∞ gn and note that g is in the
closure of U in A because A is closed. Since the closure of U is contained in
Bε/3(f), we have g(0) ≤ f(0) + ε/3 ≤ ε/3. Select an N ∈ N such that 2−N < ε/3
and g(1/n) < 2ε/3 for each n > N . Let n > N . If i < n, then (gn + αn)(1/i) =
gn(1/i) ∈ [−ε, ε]. If i ≥ n, then

−ε ≤ gn(1/i) ≤ (gn + αn)(1/i) = gn(1/i) + 2−n ≤ g(1/i) + ε/3 ≤ ε.

Thus gn + αn ∈ A for every n > N . With property (2) we have that g =
limn→∞(gn + αn) is also in the closure of A \ U , thus U is not clopen in A and A
is not zero-dimensional at f .
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Since c is isomorphic to c0, our construction also applies to that space and, by the
Hahn-Banach Theorem, to every locally convex space that contains an isomorphic
copy of c0.
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[4] J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, preprint.
[5] J. J. Dijkstra and J. van Mill, Characterizing complete Erdős space, preprint.
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