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AN INVARIANT FOR UNBOUNDED OPERATORS
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(Communicated by David R. Larson)

Abstract. For a class of unbounded operators, a deformation of a Bott pro-
jection is used to construct an integer-valued invariant measuring deviation
of the non-commutative deformations from the commutative originals, and
its interpretation in terms of K-theory of C∗-algebras is given. Calculation
of this invariant for specific important classes of unbounded operators is also
presented.

We consider a class of unbounded operators on a Hilbert space that can be
viewed as deformations of the complex coordinate on a complex plane. In order to
distinguish these deformations, we introduce an integer-valued invariant for such
operators using the deformed Bott projection and calculate it for some examples.
We also give a K-theoretical interpretation of this invariant.

Let x be an unbounded (i.e. linear densely defined) operator on a Hilbert space
H with the following properties:

(i) operators x∗x and xx∗ are well defined unbounded self-adjoint operators
on H;

(ii) the accumulation points of Spx∗x are 0 and ∞, and outside these two
points Spx∗x is discrete and of finite multiplicity;

(iii) operators x∗x and xx∗ commute as unbounded operators (i.e. their spectral
measures do).

Let x = uh be a polar decomposition with a partial isometry u and an unbounded
self-adjoint h. In what follows we can work with isometries or coisometries, but for
convenience of notation we restrict ourselves to the following case:

(iv) u is unitary.
Let {λ2

n}n∈Z with 0 ≤ . . . ≤ λn ≤ λn+1 ≤ . . . be all the eigenvalues of x∗x. The
properties (ii) and (iii) imply that there exists an orthonormal basis {en}n∈Z in H
and a bijection m : Z → Z such that this basis diagonalizes both x∗x and xx∗ and
one has

(1) x∗xen = λ2
nen and xx∗en = λ2

m(n)en.

Received by the editors October 7, 2004 and, in revised form, March 21, 2005.
2000 Mathematics Subject Classification. Primary 47L60; Secondary 19K14, 46L80.
Key words and phrases. Bott projections, K-group, deformations, invariant.
The first author was supported in part by the RFFI grant No. 05-01-00923 and HX-

619.2003.01, and the second author by the Crafoord Foundation, the Swedish Foundation for
International Cooperation in Research and Higher Education (STINT) and the Royal Swedish
Academy of Sciences. Part of this research was performed during the Non-commutative Geome-
try program 2003/2004, Mittag-Leffler Institute, Stockholm.

c©2006 American Mathematical Society
Reverts to public domain 28 years from publication

2593



2594 VLADIMIR MANUILOV AND SERGEI SILVESTROV

Note that if all λn, n ∈ Z, are distinct, then the bijection m is unique. Otherwise
different choices of a basis above may result in different bijections m : Z → Z, but
finite multiplicity of all eigenvalues implies that all bijections satisfying (1) behave
in the same way at infinity. We will also assume one more property, which does not
depend on a choice of m satisfying (1):

(v) m(−∞) = −∞ and m(∞) = ∞, i.e. limn→±∞ m(n) = ±∞.

One can look at such an operator x as at a deformed plane: if u commutes
with h and if Spu = T, Sp h = [0,∞) then continuous functions of x are in one-
to-one correspondence with continuous functions on a plane. The K-group of a
plane, K0(R2), is a free abelian group generated by the Bott element, i.e. by the
formal difference [p] − [q], p, q ∈ M2(C0(R2)+) (here the superscript + denotes
the unitalization), where p is a Bott projection and q =

(
1 0
0 0

)
. To measure

the deviation of non-commutative deformations of topological spaces from their
‘commutative’ originals, one deforms the Bott element (i.e. one changes functions
involved in the commuting projections p and q by their non-commutative analogs
— expressions in x∗x and xx∗, which result in projections P and Q) and checks its
non-triviality. For the case of compact spaces like a sphere or a torus, see [6, 4],
where it was shown that the invariant tr(P −Q) is an integer, which vanishes in the
commutative case and which equals one for the Voiculescu pair (a non-commutative
version of a two-torus). The same approach works for non-compact spaces as well,
as pointed out in [3, 5], where it was shown that a similar invariant equals one
for a ‘non-commutative plane’ given by a pair of self-adjoint unbounded operators
(A, B) that is a ‘small’ deformation of the pair (x, i d

dx ).
For the complex coordinate z on a plane, one can use, for a Bott projection, the

formula

(2) p =
(

f(|z|2) g(|z|2)z̄
g(|z|2)z 1 − f(|z|2)

)
,

where f : [0,∞) → [0, 1) is continuous and increasing and g is defined by g(t) =√
f(t)−f2(t)

t (thus f cannot be arbitrary and should satisfy continuity of the function
f(t)−f2(t)

t and its vanishing at 0).
Passing to the non-commutative framework, one should consider, for an operator

x with properties (i)–(v), the operator

P = Pf (x) =
(

p11 p12

p21 p22

)
=

(
f(x∗x) g(x∗x)x∗

xg(x∗x) 1 − f(xx∗)

)
.

As xh(x∗x) = h(xx∗)x for any continuous function h(t) with the property h(0) =
limt→∞ h(t) = 0, one easily checks that (Pf (x))2 = Pf (x), i.e. the operator Pf (x)
is a projection.

Let C(H) denote the set of trace class operators on H and let χ(ε,∞) denote the
characteristic function of the interval (ε,∞) for some ε > 0. Put qε = χ(ε,∞)(x∗x).
Due to the property (ii), one can choose the function f such that p11 − qε ∈ C(H)
and p12, p21 ∈ C(H), and due to the properties (ii) and (v), the function f can be
chosen in such a way that p22 − (1− qε) ∈ C(H). Summing up the properties of an
admissible function f : [0,∞) → [0, 1), we have:

a) f(0) = 0, limt→∞ f(t) = 1 and the function g(t) =
√

f(t)−f2(t)
t is continu-

ous with g(0) = 0;
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b) the series
∑

n>0(f(λ2
n) − 1) and

∑
n<0 f(λ2

n) are square summable, where
λ2

n are the eigenvalues of x∗x.

Note that these properties imply f(x∗x) − qε ∈ C(H) and p12, p21 ∈ C(H).
Together with (v), they imply p22 − (1 − qε) ∈ C(H).

Define a projection Q by

Q =
(

qε 0
0 1 − qε

)
.

After an appropriate choice of f among functions satisfying a) and b) one has
Pf (x) − Q ∈ C(H ⊕ H).

Definition 1. Put ω(x) = tr(Pf (x) − Q).

To prove that ω(x) is well defined, we require the following well-known lemma.
Its proof can be found, e.g. in [2], Lemma VII.8.5.

Lemma 2. Let P and Q be projections in B(H) with P − Q ∈ C(H). Then
tr(P − Q) is an integer.

Theorem 3. The number ω(x) is a well-defined integer and does not depend on
the choice of a bijection m obeying (1), of ε and of a function f obeying a) and b).

Proof. Since Pf (x) and Q are projections with Pf (x)−Q ∈ C(H⊕H), tr(Pf (x)−Q)
is an integer by Lemma 2.

Independence from the choice of m and of ε is obvious. To check that
tr(Pf (x) − Q) does not depend on our choice of an admissible function f , take
two such functions, f and f ′. Then the function fs = sf + (1− s)f ′, s ∈ [0, 1], also
satisfies a) and b), hence Pfs

(x) − Q ∈ C(H ⊕ H). Continuity of tr(Pfs
(x) − Q)

with respect to the parameter s completes the proof. �

Below we calculate ω(x) in some cases. We take H = l2(Z) and use the standard
basis {en}n∈Z for H. Let LN ⊂ H be a subspace generated by en, −N ≤ n ≤ N .
Remark that, since P − Q ∈ C(H ⊕ H), in order to calculate ω(x) it suffices to
calculate tr((P − Q)|LN⊕LN

) for big enough N .

Example 4. Let x be normal of the form xen = λnen, where 0 ≤ . . . ≤ λn ≤
λn+1 ≤ . . ., limn→−∞ λn = 0, limn→∞ λn = ∞. Then obviously tr(P |LN⊕LN

) =
tr(Q|LN⊕LN

) = N , hence ω(x) = 0.

Example 5. Let x be of the form xen = λnen+1, where 0 ≤ . . . ≤ λn ≤ λn+1 ≤ . . .,
limn→−∞ λn = 0, limn→∞ λn = ∞. Then x∗xen = λ2

nen, xx∗en = λ2
n−1en, and

tr(P |LN⊕LN
) =

N∑
n=−N

f(λ2
n) +

N∑
n=−N

(1 − f(λ2
n−1)) = N − f(λ2

−N−1) + f(λ2
N ).

On the other hand, tr(Q|LN⊕LN
) = N . Hence

lim
N→∞

tr((P − Q)|LN⊕LN
) = lim

N→∞
f(λ2

N ) − f(λ2
−N−1) = 1,

therefore, ω(x) = 1.
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Example 6. Let x be of the form xen = λnen+k, where 0 ≤ . . . ≤ λn ≤ λn+1 ≤ . . .,
limn→−∞ λn = 0, limn→∞ λn = ∞. Then x∗xen = λ2

nen, xx∗en = λ2
n−ken, and

tr(P |LN⊕LN
) =

N∑
n=−N

f(λ2
n) +

N∑
n=−N

(1 − f(λ2
n−1))

= N −
k∑

i=1

f(λ2
−N−i) +

k∑
i=1

f(λ2
N−i+1).

Once more, tr(Q|LN⊕LN
) = N . Hence

lim
N→∞

tr((P − Q)|LN⊕LN
) = lim

N→∞

k∑
i=1

f(λ2
N−i+1) −

k∑
i=1

f(λ2
−N−i) = k,

therefore, ω(x) = k.

Example 7. Important classes of examples are obtained from Example 5 when λ2
n

belongs to orbits of dynamical systems for all n, or more precisely when λ2
n+1 =

F (λ2
n), n ∈ Z, in Example 5, where F : R → R is a Borel measurable mapping of the

real line. Under conditions of Example 5 the operator x satisfies the commutation
relation x∗x = F (x∗x) as

x∗xen = λ2
nen = F (λ2

n−1)en = F (xx∗)en,

where the spectral mapping theorem was used in the last equality. For example, if
F (t) = qt for q > 1, then λn =

√
F ◦n(λ2

0) =
√

qnλ0, n ∈ Z, satisfies the conditions
of Example 5 for any starting point λ0 > 0. The operator x satisfies the ‘quantum
plane’ commutation relation x∗x = qxx∗. By the result in Example 5 we have
ω(x) = 1.

Now we are going to give an interpretation of ω(x) in K-theory terms. Let h′ be
the unbounded operator on H given by h′en = µnen, where {en} is the eigenbasis
of h and the eigenvalues 0 ≤ . . . ≤ µn ≤ µn+1 ≤ . . . have the same multiplicity as
those of h, i.e. µi = µj iff λi = λj and µn = 0 iff λn = 0. Put y = uh′. Then
y evidently satisfies the properties (i)–(v) except (iii), and the latter property can
be checked as follows.

Since x∗xen = h2en = λ2
nen and xx∗en = uh2u∗en = λ2

m(n)en, i.e. h2u∗en =
λ2

m(n)u
∗en, one has u∗en ∈ Span{ei : λi = λm(n)}, hence (h′)2u∗en = µ2

m(n)u
∗en by

definition of h′. Therefore, u(h′)2u∗ is diagonal with respect to the basis {en}n∈Z.
This implies that y∗y = (h′)2 and yy∗ = u(h′)2u∗ commute.

Now consider the non-trivial case, when h is not the identity operator. Then
there is a number i such that λi−1 < λi, and without loss of generality (by
renumbering) we may assume that i = 0. Let h̃ be the unbounded operator on
H given by h̃en = µnen, where {en} is the eigenbasis of h and the eigenvalues
0 ≤ . . . ≤ µn ≤ µn+1 ≤ . . . are given by µn = λn for n ≥ 0 and µn = 0 for n < 0.
Set µn(t) = 1

t+1λn for n < 0 and µn(t) = λn for n ≥ 0 and define a family of
unbounded operators (h̃t)t∈[0,∞) by h̃ten = µn(t)en. Also, set z = uh̃, zt = uh̃t.
Although both zt and z are unbounded, their difference is bounded and diagonal,
and one has limt→∞ ‖zt − z‖ = limt→∞ supn<0

∣∣ λn

t+1

∣∣ = limt→∞
∣∣λ−1

t+1

∣∣ = 0. By the
previous argument zt satisfies the property (iii) for each t, and passing to the limit
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as t → ∞ one sees that (iii) holds for z as well. Properties (i), (ii), (iv) and (v)
obviously hold for z.

Lemma 8. One has ω(x) = ω(y) = ω(z).

Proof. Put x(t) = (1−t)x+ty. Then ω(x(t)) is continuous. But it is integer-valued,
hence constant. The argument for z is the same. �

Lemma 9. There exists a one-parameter family (αt)t∈(0,∞) of homeomorphisms of
R+ such that

(3) lim
t→∞

‖uϕ(αt(h)) − ϕ(αt(h))u‖ = 0

for any ϕ ∈ C0([0,∞)).

Proof. There exists a sequence (µn)n∈Z such that 0 ≤ . . . ≤ µ−1 ≤ µ0 ≤ µ1 ≤ µ2 ≤
. . . such that µi = µj iff λi = λj and µn = 0 iff λn = 0 and |µm(n) − µn| ≤ 1
for all n. Take a homeomorphism ψ : R+ → R+ such that ψ(λn) = µn and let
βt(s) = s

t+1 , t > 0. Put αt = ψ−1 ◦ βt ◦ ψ and ϕ̃ = ϕ ◦ ψ−1. Then

‖uϕ(αt(h)) − ϕ(αt(h))u‖ = sup
n∈Z

|ϕ(αt(λm(n))) − ϕ(αt(λn))|

= sup
n∈Z

|ϕ(βt(µm(n))) − ϕ(βt(µn))| = sup
n∈Z

∣∣∣ϕ̃(µm(n)

t + 1

)
− ϕ̃

( µn

t + 1

)∣∣∣,
and (3) holds because supn∈Z

∣∣µm(n)

t+1 − µn

t+1

∣∣ ≤ 1
t+1 vanishes as t → ∞ and because

ϕ̃ ∈ C0([0,∞)), hence is uniformly continuous. �

Theorem 10. ω(x) = index(uqε).

Proof. Without loss of generality we can assume that f(r) = 0 for r ∈ (0, ε). Then( qε 0
0 qε

)
commutes with Pf (x) and with Q and

( 1−qε 0
0 1−qε

)
(Pf (x) − Q) = 0, hence

(4) ω(x) = tr
(( qε 0

0 qε

)
Pf (x) −

(
qε 0
0 0

))
.

Let y = uk, where k =
∑

n∈Z
µnen, where µn = 0 for n < 0 and µn = λn for

n ≥ 0. By Lemma 8, ω(y) = ω(x). Let H0 = q0(H) and let u0 = uq0, k0 = q0k,
y0 = u0k0. All these operators and all further formulas are in the Hilbert space
H0. The formula for ω(y0) in H0 is written as ω(y0) = tr (Pf (y0) − ( 0 0

0 1 )), and it
follows from (4) that ω(y0) = ω(x).

Let C0(R2) be the C∗-algebra of continuous functions on R2 vanishing at infinity.
This algebra is generated by the functions e2πiθ and ϕ(r), ϕ ∈ C0([0,∞)), where θ
and r are the polar coordinates on the plane. Note also that the operator uϕ(h) is
compact for any ϕ ∈ C0([0,∞)). In what follows the main tool will be E-theory of
Connes and Higson [1] based on the notion of asymptotic homomorphisms. Recall
that an asymptotic homomorphism from a C∗-algebra A to a C∗-algebra B is a
family of maps τ = (τt)t∈[0,∞) : A → B such that t → τt(a) is continuous for each
a ∈ A, and τt(a1a2)−τt(a1)τt(a2), τt(λa1+a2)−λτt(a1)−τt(a2) and τt(a∗)−τt(a)∗

vanish as t → ∞ for all a, a1, a2 ∈ A and all λ ∈ C.

Corollary 11. The operator y0 defines, by e2πiθ �→ u0, ϕ(r) �→ ϕ(αt(k0)), the as-
ymptotic homomorphism τy0 = (τy0

t )t∈(0,∞) from C0(R2) to the C∗-algebra K(H0)
of compact operators.
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Thus x, and then y0, defines a class [τy0 ] in the E-theory group E(C0(R2), K(H)),
which is the same as the K-homology group of C0(R2). Let e be a class in the K-
theory group of R

2. Then the pairing between K-theory and K-homology provides
us with an integer 〈e, [τy0 ]〉.

Recall that the Bott class β in K0(R2) is given by the formal difference of pro-
jections p (2) and ( 0 0

0 1 ).

Lemma 12. One has ω(y0) = 〈β, [τy0 ]〉, where β ∈ K0(R2) is the Bott class.

Proof. Note that p is a two-by-two matrix over the algebra C0(R2) with adjoined
unit and we can extend τy0

t onto this algebra by defining τy0
t (1) = 1. Then it

evidently follows from Corollary 11 that limt→∞ ‖τy0
t (p) − Pf (y0)‖ = 0. Without

loss of generality we can assume that the function f satisfies f(r) = 1 for r ∈ (N,∞)
for sufficiently large N . Then the operator τy0

t (p) − ( 0 0
0 1 ) is of finite rank and one

has 〈β, [τy0 ]〉 = limt→∞ tr (τy0
t (p) − ( 0 0

0 1 )) = ω(y0) (cf. [4]). �
To finish the proof of the theorem, note that u0 is Fredholm, hence it defines a

homomorphism ρ : C(T) → B(H0)/K(H0) and (which is the same) an extension of
C(T) by the C∗-algebra of compact operators on H0. The class of this extension
in the K-homology group K1(T) is given by index(u0). On the other hand, since
the Connes–Higson construction [1] applied to the map ρ gives the asymptotic
homomorphism τy0 (this is because (1−f)(αt(k0)) is an approximate unit in K(H0),
asymptotically commuting with u0), we have index(y0) = 〈β, [τy0 ]〉. Finally note
that the Fredholm operators uqε and u0 differ by a finite rank operator, hence they
have the same index.

�
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