Super solutions of the dynamical Yang-Baxter equation
HTML articles powered by AMS MathViewer
- by Gizem Karaali
- Proc. Amer. Math. Soc. 134 (2006), 2521-2531
- DOI: https://doi.org/10.1090/S0002-9939-06-08495-4
- Published electronically: March 22, 2006
- PDF | Request permission
Abstract:
Solutions of the classical dynamical Yang-Baxter equation on a Lie superalgebra are called super dynamical $r-$matrices. A super dynamical $r-$matrix $r$ satisfies the zero weight condition if \[ [h\otimes 1 + 1 \otimes h, r(\lambda )] = 0 \text { for all } h \in \mathfrak {h}, \lambda \in \mathfrak {h}^*. \] In this paper we classify super dynamical $r-$matrices with zero weight.References
- A. A. Belavin and V. G. Drinfel′d, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funktsional. Anal. i Prilozhen. 16 (1982), no. 3, 1–29, 96 (Russian). MR 674005
- A. A. Belavin and V. G. Drinfel′d, Triangle equations and simple Lie algebras, Mathematical physics reviews, Vol. 4, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., vol. 4, Harwood Academic Publ., Chur, 1984, pp. 93–165. Translated from the Russian. MR 768939
- Pavel Etingof, On the dynamical Yang-Baxter equation, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 555–570. MR 1957065
- Pavel Etingof, Travis Schedler, and Olivier Schiffmann, Explicit quantization of dynamical $r$-matrices for finite dimensional semisimple Lie algebras, J. Amer. Math. Soc. 13 (2000), no. 3, 595–609. MR 1758755, DOI 10.1090/S0894-0347-00-00333-7
- Pavel Etingof and Olivier Schiffmann, Lectures on quantum groups, Lectures in Mathematical Physics, International Press, Boston, MA, 1998. MR 1698405
- Pavel Etingof and Alexander Varchenko, Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys. 192 (1998), no. 1, 77–120. MR 1612160, DOI 10.1007/s002200050292
- Geer, N.; “Etingof-Kazhdan Quantization of Lie Superbialgebras”; arXiv:math.QA/0409563
- Gizem Karaali, Constructing $r$-matrices on simple Lie superalgebras, J. Algebra 282 (2004), no. 1, 83–102. MR 2095573, DOI 10.1016/j.jalgebra.2004.07.005
- Karaali, G.; “A New Lie Bialgebra Structure on $sl(2,1)$”, Contemp. Math. (to appear).
- Olivier Schiffmann, On classification of dynamical r-matrices, Math. Res. Lett. 5 (1998), no. 1-2, 13–30. MR 1618367, DOI 10.4310/MRL.1998.v5.n1.a2
Bibliographic Information
- Gizem Karaali
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
- Email: gizem@math.ucsb.edu
- Received by editor(s): March 31, 2005
- Published electronically: March 22, 2006
- Communicated by: Dan M. Barbasch
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 2521-2531
- MSC (2000): Primary 17B37
- DOI: https://doi.org/10.1090/S0002-9939-06-08495-4
- MathSciNet review: 2213729