On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments

Authors:
Xianhua Tang and Xingfu Zou

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2967-2974

MSC (2000):
Primary 34K13; Secondary 34K20, 92D25

DOI:
https://doi.org/10.1090/S0002-9939-06-08320-1

Published electronically:
May 9, 2006

MathSciNet review:
2231621

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By using Krasnoselskii’s fixed point theorem, we prove that the following periodic $n-$species Lotka-Volterra competition system with multiple deviating arguments \begin{equation*} (\ast )\quad \quad \dot {x}_i(t)=x_i(t)\left [r_i(t)-\sum _{j=1}^{n}a_{ij}(t)x_j(t-\tau _{ij}(t)) \right ],\quad i=1, 2, \ldots , n,\qquad \quad \end{equation*} has at least one positive $\omega -$periodic solution provided that the corresponding system of linear equations \begin{equation*} (\ast \ast )\qquad \qquad \qquad \qquad \quad \sum _{j=1}^{n}\bar {a}_{ij}\ x_j= \bar {r}_i, \quad i=1, 2, \ldots , n,\qquad \qquad \qquad \qquad \quad \end{equation*} has a positive solution, where $r_i, a_{ij}\in C({\mathbf {R}}, [0, \infty ))$ and $\tau _{ij}\in C({\mathbf {R}}, {\mathbf {R}})$ are $\omega -$periodic functions with \[ \bar {r}_i=\frac {1}{\omega }\int _{0}^{\omega }r_i(s)ds >0;\ \ \ \bar {a}_{ij}=\frac {1}{\omega }\int _{0}^{\omega }a_{ij}(s)ds \ge 0, \quad i, j=1, 2, \ldots , n.\] Furthermore, when $a_{ij}(t)\equiv a_{ij}$ and $\tau _{ij}(t)\equiv \tau _{ij}$, $i,j =1,\ldots ,n$, are constants but $r_i(t),\ i=1, \ldots ,n$, remain $\omega$-periodic, we show that the condition on $(\ast \ast )$ is also necessary for $(\ast )$ to have at least one positive $\omega -$periodic solution.

- Carlos Alvarez and Alan C. Lazer,
*An application of topological degree to the periodic competing species problem*, J. Austral. Math. Soc. Ser. B**28**(1986), no. 2, 202–219. MR**862570**, DOI https://doi.org/10.1017/S0334270000005300 - Shair Ahmad,
*On the nonautonomous Volterra-Lotka competition equations*, Proc. Amer. Math. Soc.**117**(1993), no. 1, 199–204. MR**1143013**, DOI https://doi.org/10.1090/S0002-9939-1993-1143013-3 - Anna Battauz and Fabio Zanolin,
*Coexistence states for periodic competitive Kolmogorov systems*, J. Math. Anal. Appl.**219**(1998), no. 2, 179–199. MR**1606377**, DOI https://doi.org/10.1006/jmaa.1997.5726 - Yuming Chen and Zhan Zhou,
*Stable periodic solution of a discrete periodic Lotka-Volterra competition system*, J. Math. Anal. Appl.**277**(2003), no. 1, 358–366. MR**1954481**, DOI https://doi.org/10.1016/S0022-247X%2802%2900611-X - J. M. Cushing,
*Two species competition in a periodic environment*, J. Math. Biol.**10**(1980), no. 4, 385–400. MR**602256**, DOI https://doi.org/10.1007/BF00276097 - Meng Fan and Ke Wang,
*Global periodic solutions of a generalized $n$-species Gilpin-Ayala competition model*, Comput. Math. Appl.**40**(2000), no. 10-11, 1141–1151. MR**1784658**, DOI https://doi.org/10.1016/S0898-1221%2800%2900228-5 - Meng Fan, Ke Wang, and Daqing Jiang,
*Existence and global attractivity of positive periodic solutions of periodic $n$-species Lotka-Volterra competition systems with several deviating arguments*, Math. Biosci.**160**(1999), no. 1, 47–61. MR**1704338**, DOI https://doi.org/10.1016/S0025-5564%2899%2900022-X - H. I. Freedman and Paul Waltman,
*Persistence in a model of three competitive populations*, Math. Biosci.**73**(1985), no. 1, 89–101. MR**779763**, DOI https://doi.org/10.1016/0025-5564%2885%2990078-1 - K. Gopalsamy,
*Global asymptotical stability in a periodic Lotka-Volterra system,*J. Austral. Math. Soc. Ser. B 24(1982), 160-. - K. Gopalsamy,
*Global asymptotical stability in a periodic Lotka-Volterra system,*J. Austral. Math. Soc. Ser. B 29(1985), 66-72. - K. Gopalsamy,
*Stability and oscillations in delay differential equations of population dynamics*, Mathematics and its Applications, vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1992. MR**1163190** - I. Győri and G. Ladas,
*Oscillation theory of delay differential equations*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. With applications; Oxford Science Publications. MR**1168471** - M. A. Krasnosel′skiĭ,
*Positive solutions of operator equations*, P. Noordhoff Ltd. Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR**0181881** - Philip Korman,
*Some new results on the periodic competition model*, J. Math. Anal. Appl.**171**(1992), no. 1, 131–138. MR**1192498**, DOI https://doi.org/10.1016/0022-247X%2892%2990381-M - Yang Kuang,
*Delay differential equations with applications in population dynamics*, Mathematics in Science and Engineering, vol. 191, Academic Press, Inc., Boston, MA, 1993. MR**1218880** - Yongkun Li,
*Periodic solutions of $N$-species competition system with time delays*, J. Biomath.**12**(1997), no. 1, 1–7. MR**1460907** - Yongkun Li,
*On a periodic delay logistic type population model*, Ann. Differential Equations**14**(1998), no. 1, 29–36. MR**1633664** - Yongkun Li,
*Periodic solutions for delay Lotka-Volterra competition systems*, J. Math. Anal. Appl.**246**(2000), no. 1, 230–244. MR**1761160**, DOI https://doi.org/10.1006/jmaa.2000.6784 - Yongkun Li and Yang Kuang,
*Periodic solutions of periodic delay Lotka-Volterra equations and systems*, J. Math. Anal. Appl.**255**(2001), no. 1, 260–280. MR**1813821**, DOI https://doi.org/10.1006/jmaa.2000.7248 - H. L. Royden,
*Real analysis*, 3rd ed., Macmillan Publishing Company, New York, 1988. MR**1013117** - Akira Shibata and Nobuhiko Saitô,
*Time delays and chaos in two competing species*, Math. Biosci.**51**(1980), no. 3-4, 199–211. MR**587228**, DOI https://doi.org/10.1016/0025-5564%2880%2990099-1 - Hal L. Smith,
*Periodic solutions of periodic competitive and cooperative systems*, SIAM J. Math. Anal.**17**(1986), no. 6, 1289–1318. MR**860914**, DOI https://doi.org/10.1137/0517091 - Hal L. Smith,
*Periodic competitive differential equations and the discrete dynamics of competitive maps*, J. Differential Equations**64**(1986), no. 2, 165–194. MR**851910**, DOI https://doi.org/10.1016/0022-0396%2886%2990086-0 - Antonio Tineo and Carlos Alvarez,
*A different consideration about the globally asymptotically stable solution of the periodic $n$-competing species problem*, J. Math. Anal. Appl.**159**(1991), no. 1, 44–50. MR**1119420**, DOI https://doi.org/10.1016/0022-247X%2891%2990220-T - X. H. Tang and Xingfu Zou,
*3/2-type criteria for global attractivity of Lotka-Volterra competition system without instantaneous negative feedbacks*, J. Differential Equations**186**(2002), no. 2, 420–439. MR**1942216**, DOI https://doi.org/10.1016/S0022-0396%2802%2900011-6 - X. H. Tang and Xingfu Zou,
*Global attractivity of non-autonomous Lotka-Volterra competition system without instantaneous negative feedback*, J. Differential Equations**192**(2003), no. 2, 502–535. MR**1990850**, DOI https://doi.org/10.1016/S0022-0396%2803%2900042-1

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34K13,
34K20,
92D25

Retrieve articles in all journals with MSC (2000): 34K13, 34K20, 92D25

Additional Information

**Xianhua Tang**

Affiliation:
School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, People’s Republic of China

Email:
tangxh@mail.csu.edu.cn

**Xingfu Zou**

Affiliation:
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

MR Author ID:
618360

Email:
xzou@uwo.ca

Keywords:
Positive periodic solution,
Lotka-Volterra competition system

Received by editor(s):
August 13, 2004

Received by editor(s) in revised form:
April 29, 2005

Published electronically:
May 9, 2006

Additional Notes:
The first author was supported in part by NNSF of China (No. 10471153), and the second author was supported in part by the NSERC of Canada and by a Faculty of Science Dean’s Start-Up Grant at the University of Western Ontario.

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.