COMMUTANTS OF CERTAIN ANALYTIC OPERATOR ALGEBRAS

GUOXING JI, TOMOYOSHI OHWADA, AND KICHI-SUKE SAIITO

(Communicated by David R. Larson)

Abstract. We prove that algebraic commutants of maximal subdiagonal algebras and of analytic operator algebras determined by flows in a \(\sigma \)-finite von Neumann algebra are self-adjoint.

1. Introduction

Let \(\mathcal{H} \) be a complex Hilbert space and let \(\mathcal{B}(\mathcal{H}) \) be the algebra of all bounded linear operators on \(\mathcal{H} \). For a subset \(E \) of \(\mathcal{B}(\mathcal{H}) \), we denote by \(E' \) the algebraic commutant, that is,

\[
E' = \{ X \in \mathcal{B}(\mathcal{H}) : AX =XA, \ \forall A \in E \}.
\]

If \(T \in \mathcal{B}(\mathcal{H}) \), we call \(\{ T \}' \) the algebraic commutant of \(T \). The well-known theorem of Fuglede states that if \(N \) is normal and \(X \) commutes with \(N \), so does \(X^* \). That is, the algebraic commutant \(\{ N \}' \) of \(N \) is self-adjoint. Note that \(\{ N \}' \) is the same as the commutant of the algebra generated by \(N \) and \(I \), which is non-self-adjoint in general. Thus it may be asked which subalgebras have a self-adjoint commutant. For example, if all elements in a subalgebra are normal or the algebra itself is self-adjoint, then its algebraic commutant is self-adjoint. In general, this problem is not particularly interesting. However special cases of this problem are interesting. F. Gilfeather and D.R. Larson in [6] showed that the algebraic commutant of a nest subalgebra of a von Neumann algebra is self-adjoint. We note that a nest subalgebra of a von Neumann algebra is a kind of analytic operator algebra. Thus it is interesting to consider this problem for general analytic operator algebras.

In [2], W. Arveson introduced the notion of subdiagonal algebras to give a unified theory of non-self-adjoint operator algebras, including the algebra of bounded analytic matrix-valued (or more generally, operator-valued) functions and nest subalgebras of von Neumann algebras.
Let \mathcal{M} be a σ-finite von Neumann algebra acting on \mathcal{H}. We denote by \mathcal{M}_* the space of all σ-weakly continuous linear functionals of \mathcal{M}. For a von Neumann subalgebra \mathcal{D} of \mathcal{M}, let Φ be a faithful normal conditional expectation from \mathcal{M} onto \mathcal{D}. A subalgebra \mathfrak{A} of \mathcal{M}, containing \mathcal{D}, is called a subdiagonal algebra of \mathcal{M} with respect to Φ if

(i) $\mathfrak{A} \cap \mathfrak{A}^* = \mathcal{D}$,

(ii) Φ is multiplicative on \mathfrak{A}, and

(iii) $\mathfrak{A} + \mathfrak{A}^*$ is σ-weakly dense in \mathcal{M}.

The algebra \mathcal{D} is called the diagonal of \mathfrak{A}. Although subdiagonal algebras are not assumed to be σ-weakly closed in [2], the σ-weak closure of a subdiagonal algebra is again a subdiagonal algebra of \mathcal{M} with respect to Φ (Remark 2.1.2 in [2]). Thus we assume that our subdiagonal algebras are always σ-weakly closed.

We say that \mathfrak{A} is a maximal subdiagonal algebra in \mathcal{M} with respect to Φ in case that \mathfrak{A} is not properly contained in any other subalgebra of \mathcal{M} which is subdiagonal with respect to Φ. Put $\mathfrak{A}_0 = \{X \in \mathfrak{A} : \Phi(X) = 0\}$ and $\mathfrak{A}_m = \{X \in \mathcal{M} : \Phi(AXB) = \Phi(BXA) = 0, \forall A \in \mathfrak{A}, B \in \mathfrak{A}_0\}$. By Theorem 2.1.1 in [2], we recall that \mathfrak{A}_m is a maximal subdiagonal algebra of \mathcal{M} with respect to Φ containing \mathfrak{A}. If there is a faithful normal finite trace τ on \mathcal{M} such that $\tau \circ \Phi = \tau$, we say that \mathfrak{A} is finite subdiagonal.

On the other hand, let $\alpha = \{\alpha_t\}_{t \in \mathbb{R}}$ be a flow of \mathbb{R} on \mathcal{M}, i.e. $\{\alpha_t\}_{t \in \mathbb{R}}$ is a one-parameter group of *-automorphisms of \mathcal{M} such that, for each $X \in \mathcal{M}$, $t \to \alpha_t(X)$ is σ-weakly continuous. Write $H^\infty(\alpha) = \{X \in \mathcal{M} : sp_\alpha(X) \subseteq [0, \infty)\}$, where $sp_\alpha(\cdot)$ is an Arveson spectrum (Section 3). Then $H^\infty(\alpha)$ is a σ-weakly closed subalgebra of \mathcal{M} satisfying that $H^\infty(\alpha) \cap (H^\infty(\alpha))^*$ is σ-weakly dense in \mathcal{M}. The structure of $H^\infty(\alpha)$ was studied by several authors (cf. [3] [13] [14] [16]). It is known that if there is a faithful normal conditional expectation from \mathcal{M} onto $H^\infty(\alpha) \cap (H^\infty(\alpha))^*$, then $H^\infty(\alpha)$ is a maximal subdiagonal algebra of \mathcal{M}. Moreover, if \mathfrak{A} is a nest subalgebra of \mathcal{M}, then there is an inner flow $\alpha = \{\alpha_t\}_{t \in \mathbb{R}}$, that is, α is implemented by a continuous unitary group $\{U_t : t \in \mathbb{R}\} \subset \mathcal{M}$, such that $\mathfrak{A} = H^\infty(\alpha)$ (cf. Theorem 4.2.3 in [14]).

In this note we prove that algebraic commutants of maximal subdiagonal algebras and of analytic operator algebras are self-adjoint.

2. THE COMMUTANT OF A MAXIMAL SUBDIAGONAL ALGEBRA

We consider the algebraic commutant of a maximal subdiagonal algebra \mathfrak{A} with respect to Φ. The following result was proved in [9]. For completeness, we give the proof here also.

Lemma 1. Let \mathfrak{A} be a finite subdiagonal algebra with respect to Φ of \mathcal{M}. Then $\mathfrak{A}' = \mathcal{M}'$.

Proof. It is trivial that $\mathfrak{A} \supseteq \mathcal{M}'$. Now let $X \in \mathfrak{A}'$ and $T \in \mathcal{M}$. Then for any $\epsilon > 0$, we have that $T^*T + \epsilon I$ is a positive invertible operator in \mathcal{M}. Note that \mathfrak{A} is maximal subdiagonal (cf. [2]). By Theorem 4.2.1 in [2], there is an invertible operator A in \mathfrak{A} so that $T^*T + \epsilon I = A^*A$. Then

$$X^*(T^*T + \epsilon I)X = A^*A^*X^*XA \leq \|X\|^2A^*A = \|X\|^2(T^*T + \epsilon I).$$

It follows that $X^*T^*TX \leq \|X\|^2T^*T$ by letting $\epsilon \to 0$. In particular, $X^*EX \leq \|X\|^2E$ for every positive projection E in \mathcal{M}. It follows that $(I - E)X^*EX(I - E) \leq \|X\|^2$. Hence, $X^*EX \leq \frac{1}{2}E$ for every projection E in \mathcal{M}. Therefore, $\mathfrak{A}' \supseteq \mathcal{M}'$. This completes the proof.
0, which implies that $EX(I-E) = 0$. Thus $EX =XE$ for every projection $E \in \mathcal{M}$, which implies that $X \in \mathcal{M}'$. The proof is complete. □

We next recall Haagerup’s reduction theory [7]. Since \mathcal{M} is σ-finite, there exists a faithful normal state φ of \mathcal{M} such that $\varphi \circ \Phi = \varphi$. Let $\sigma^\varphi = \{\sigma^\varphi_t\}_{t \in \mathbb{R}}$ be the modular automorphism group of \mathcal{M} associated with φ. We know that \mathfrak{A} is $\{\sigma^\varphi_t\}_{t \in \mathbb{R}}$ invariant from Theorem 2.4 in [10]. Let G be the discrete subgroup $\bigcup_{n \geq 1} 2^{-n}\mathbb{Z}$ of \mathbb{R}. We consider the crossed product $\mathcal{M} \rtimes_{\sigma^\varphi} G$ with respect to σ^φ. Then we have that $\mathcal{M} \rtimes_{\sigma^\varphi} G$ is a von Neumann algebra on $l^2(G, \mathcal{H})$ generated by the operators $\pi(X), X \in \mathcal{M}$, and $\lambda(s), s \in G$, defined by the equations

$$(\pi(X)\xi)(t) = \sigma^\varphi_t(X)\xi(t), \quad \xi \in \ell^2(G, \mathcal{H}), \ t \in G,$$

and

$$(\lambda(s)\xi)(t) = \xi(t-s), \quad \xi \in \ell^2(G, \mathcal{H}), \ t \in G.$$

Note that π is a normal faithful representation of \mathcal{M} on $\ell^2(G, \mathcal{H})$. Let $\hat{\varphi}$ be the dual weight of φ on $\mathcal{M} \rtimes_{\sigma^\varphi} G$. Then $\hat{\varphi}$ is again a faithful normal state on $\mathcal{M} \rtimes_{\sigma^\varphi} G$. Haagerup’s reduction theorem asserts that there is an increasing sequence $\{\mathcal{R}_n\}_{n \geq 1}$ of von Neumann subalgebras of $\mathcal{M} \rtimes_{\sigma^\varphi} G$ with the following properties:

(i) each \mathcal{R}_n is finite;
(ii) $\bigcup_{n \geq 1} \mathcal{R}_n$ is σ-weakly dense in $\mathcal{M} \rtimes_{\sigma^\varphi} G$;
(iii) for each $n \geq 1$ there is a faithful normal conditional expectation \mathcal{E}_n from $\mathcal{M} \rtimes_{\sigma^\varphi} G$ onto \mathcal{R}_n such that $\hat{\varphi} \circ \mathcal{E}_n = \hat{\varphi}$, $\mathcal{E}_n \mathcal{E}_{n+1} = \mathcal{E}_n$, $n \geq 1$, and

$$\lim_{n \to \infty} \|\psi \circ \mathcal{E}_n - \psi\| = 0 \text{ for all } \psi \in (\mathcal{M} \rtimes_{\sigma^\varphi} G)_*.$$

We refer the readers to [7] and [17] for more details.

We now can extend Φ to a normal faithful conditional expectation $\hat{\Phi}$ from $\mathcal{M} \rtimes_{\sigma^\varphi} G$ onto $\mathcal{D} \rtimes_{\sigma^\varphi} G$, which is naturally identified as a von Neumann subalgebra of $\mathcal{M} \rtimes_{\sigma^\varphi} G$.

Let $\hat{\mathfrak{A}}$ be the σ-weakly closed subalgebra generated by $\{\pi(X) : X \in \mathfrak{A}\}$ and $\{\lambda(s) : s \in G\}$. Since \mathfrak{A} is σ^φ_t invariant by Theorem 2.4 in [10], $\hat{\mathfrak{A}}$ is the σ-weak closure of the set of all linear combinations of $\lambda(s)\pi(X), s \in G, X \in \mathfrak{A}$. The following lemma was proved in [17].

Lemma 2. \(\hat{\mathfrak{A}}\) is a maximal subdiagonal algebra with respect to $\hat{\Phi}$.

Let $\mathfrak{A}_n = \mathcal{R}_n \cap \hat{\mathfrak{A}} = \mathcal{E}_n(\hat{\mathfrak{A}})$. We have the following lemma (Lemma 2 in [17]).

Lemma 3. \mathfrak{A}_n is a finite subdiagonal algebra in \mathcal{R}_n with respect to $\hat{\Phi}|_{\mathcal{R}_n}$ and $\bigcup_{n \geq 1} \mathfrak{A}_n$ is σ-weakly dense in $\hat{\mathfrak{A}}$.

We now have the main theorem in this section.

Theorem 1. Let \mathcal{M} be a σ-finite von Neumann algebra and let \mathfrak{A} be a maximal subdiagonal algebra with respect to Φ of \mathcal{M}. Then the commutant \mathfrak{A}' of \mathfrak{A} is self-adjoint, that is, $\mathfrak{A}' = \mathcal{M}'$.

Proof. We first claim that $\hat{\mathfrak{A}}' = (\mathcal{M} \rtimes_{\sigma^\varphi} G)'$. In fact, let $X \in \hat{\mathfrak{A}}'$. Then $X \in \mathfrak{A}_n'$ for all $n \in \mathbb{N}$. By Lemmas 1 and 3, we have $X^* \in \mathfrak{A}_n'$. Note that for every $Y \in \mathfrak{A}$, we have $\mathcal{E}_n(Y) \in \mathfrak{A}_n$ for all $n \in \mathbb{N}$ and $Y = \lim_n \mathcal{E}_n(Y)$ σ-weakly from Haagerup’s theory. Then it follows that $X^*Y = YX^*$, which implies that $X^* \in \mathfrak{A}'$.

Now let $X \in \mathfrak{A}$. We define an operator \hat{X} on $\ell^2(G, \mathcal{H})$ by

$$(\hat{X}\xi)(s) = X\xi(s), \quad s \in G, \xi \in \ell^2(G, \mathcal{H}).$$

Then we have that $\hat{X} \in \mathfrak{A}'$. In fact, for $\xi \in \ell^2(G, \mathcal{H})$, $t, s \in \mathbb{R}$ and $Y \in \mathfrak{A}$,

$$(\hat{X}\pi(Y)\xi)(t) = X(\pi(Y)\xi)(t) = X\sigma^\varphi_t(Y)\xi(t) = \sigma^\varphi_t(Y)X\xi(t) = (\pi(Y)\hat{X}\xi)(t)$$

and

$$(\hat{X}\lambda_s\xi)(t) = X((\lambda_s\xi)(t)) = X\xi(t-s) = (\hat{X}\xi)(t-s) = (\lambda_s(\hat{X}\xi))(t) = (\lambda_s\hat{X}\xi)(t).$$

It follows that $(\hat{X})^* \in \mathfrak{A}'$, which implies that $(\hat{X})^*\pi(Y) = \pi(Y)(\hat{X})^*$ for all $Y \in \mathfrak{A}$. Note that $(\hat{X})^* = (X^*)$. Then $(X^*)\pi(Y) = \pi(Y)(X^*)$ for all $Y \in \mathfrak{A}$. In particular, $X^*Y = YX^*$. Thus we have $X^* \in \mathfrak{A}'$. Note that $\mathfrak{A} + \mathfrak{A}^*$ is σ-weakly dense in \mathcal{M}. It then follows that $X \in \mathcal{M}'$. Hence $\mathfrak{A}' = \mathcal{M}'$. The proof is complete. \hfill \Box

3. The commutant of an analytic operator algebra

In this section we consider the algebraic commutant of an analytic operator algebra determined by a flow on \mathcal{M}. We need Arveson’s theory of spectral subspaces and, so we recall the definitions here. Let $\alpha = \{\alpha_t\}_{t \in \mathbb{R}}$ be a flow on \mathcal{M}, i.e. a σ-weakly continuous one parameter group of $*$-automorphisms of \mathcal{M}. For each element $X \in \mathcal{M}$ and a function $f \in L^1(\mathbb{R})$, we define the convolution $f \ast_X \alpha$ by

$$f \ast_X \alpha = \int_{-\infty}^{+\infty} f(t)\alpha_t(X)dt.$$

For $f \in L^1(\mathbb{R})$, let $Z(f) = \{t \in \mathbb{R} : \hat{f}(t) = 0\}$, where $\hat{f}(t) = \int_{-\infty}^{+\infty} e^{-ist}f(s)ds$ is the Fourier transform of f. For $X \in \mathcal{M}$, we define the Arveson spectrum of X with respect to the flow α to be the set

$$\bigcap\{Z(f) : f \ast_X \alpha = 0\}$$

and denote it by $sp_\alpha(X)$. For any subset S of \mathbb{R} we define the spectral subspace $M^\alpha(S)$ to be the σ-weak closure of the set $\{X \in \mathcal{M} : sp_\alpha(X) \subset S\}$. We refer the readers to [3, 4, 13, 14] for the elementary properties of spectra and spectral subspaces. Put $H^\infty(\alpha) = M^\alpha([0, \infty))$ and $H_0^\infty(\alpha) = M^\alpha((0, \infty))$. It is known that $H^\infty_0(\alpha)$ is a two-sided ideal of $H^\infty(\alpha)$. Let $\mathcal{D} = H^\infty(\alpha) \cap (H^\infty(\alpha))^*$ be the fixed point subalgebra of α. We recall that \mathcal{M} is said to be \mathbb{R}-finite relative to α if there is a separating family of α-invariant normal states on \mathcal{M}. At the opposite extreme, we say that \mathcal{M} is completely non-\mathbb{R}-finite relative to α in case there are no invariant normal states.

Lemma 4. If \mathcal{M} is completely non-\mathbb{R}-finite relative to α, then $H^\infty(\alpha) = H^\infty_0(\alpha)$.

Proof. Since \mathcal{M} is σ-finite, without loss of generality by choosing an appropriate representation for \mathcal{M}, we may assume that \mathcal{M} has a cyclic and separating vector in \mathcal{H}.

If $H^\infty(\alpha) \neq H^\infty(\alpha)_0$, then there is an element $f \in \mathcal{M}_s$ such that $f(A) = 0$ for all $A \in H^\infty(\alpha)$ and $f(T) \neq 0$ for some $T \in H^\infty(\alpha)$. Since \mathcal{M} has a separating vector in \mathcal{H}, there are vectors $x, y \in \mathcal{H}$ such that $f(A) = (Ax, y)$ for all $A \in \mathcal{M}$ by Proposition 7.4.5 and Corollary 7.3.3 in [14]. Let $\mathfrak{M} = \{Ax : A \in H^\infty(\alpha)\}$ (resp. $\mathfrak{M}_0 = \{Ax : A \in H^\infty(\alpha)_0\}$) be the closed subspace generated by $\{Ax : A \in H^\infty(\alpha)\}$ (resp. $\{Ax : A \in H^\infty(\alpha)_0\}$) of \mathcal{H}. Then both \mathfrak{M} and \mathfrak{M}_0 are invariant subspaces for $H^\infty(\alpha)$. We have $\mathfrak{M}_0 \subset \mathfrak{M}$ since $(Tx, y) \neq 0$ for some $T \in H^\infty(\alpha)$ and $(Tx, y) = 0$ for all $T \in H^\infty(\alpha)_0$. It is trivial that $H^\infty(\alpha)_0 \mathfrak{M} \subset \mathfrak{M}_0$ since $H^\infty(\alpha)_0$ is a two-sided ideal of $H^\infty(\alpha)$. On the other hand, since \mathcal{M} is completely non-\mathbb{R}-finite relative to α, by Corollary 5.7 in [14], \mathfrak{M} is completely normalized in the sense of Definition 5.1 in [14], that is,

$$\mathfrak{M} = \bigwedge_{s < 0} [M^\alpha([s, \infty)))\mathfrak{M}] = \bigvee_{s > 0} [M^\alpha([s, \infty)))\mathfrak{M}].$$

Note that $M^\alpha([s, \infty)) \subset H^\infty(\alpha)_0$ for all $s > 0$. We then have that $[M^\alpha([s, \infty))\mathfrak{M}] \subset \mathfrak{M}_0$ for all $s > 0$ which implies that $\mathfrak{M} \subset \mathfrak{M}_0$. This is a contradiction. Hence $H^\infty(\alpha) = H^\infty(\alpha)_0$. The proof is complete.

We recall that the crossed product $\mathcal{M} \rtimes_\alpha \mathbb{R}$ determined by \mathcal{M} and α is the von Neumann algebra on the Hilbert space $L^2(\mathbb{R}, \mathcal{H})$ generated by the operators $\pi(X)$, $X \in \mathcal{M}$, and $\lambda(s)$, $s \in \mathbb{R}$, defined by the equations

$$(\pi(X)f)(t) = \alpha_{-t}(X)f(t), \quad f \in L^2(\mathbb{R}, \mathcal{H}), \quad t \in \mathbb{R},$$

and

$$(\lambda(s)f)(t) = f(t-s), \quad f \in L^2(\mathbb{R}, \mathcal{H}), \quad t \in \mathbb{R}.$$

It is clear that $\pi(\alpha_t(X)) = \lambda(t)\pi(X)\lambda(t)^*$ for all $X \in \mathcal{M}$ and $t \in \mathbb{R}$. For any $Y \in \mathcal{M} \rtimes_\alpha \mathbb{R}$, we define $\beta_t(Y) = \lambda(t)Y\lambda(t)^*$, $\forall t \in \mathbb{R}$. Then $\beta = \{\beta_t\}_{t \in \mathbb{R}}$ is an inner flow on $\mathcal{M} \rtimes_\alpha \mathbb{R}$. We know that $H^\infty(\beta)$ is a nest subalgebra in $\mathcal{M} \rtimes_\alpha \mathbb{R}$ by Theorem 4.2.3 in [14].

Let \mathcal{A} be the σ-weakly closed subalgebra of $\mathcal{M} \rtimes_\alpha \mathbb{R}$ generated by $\{\pi(X) : X \in H^\infty(\alpha)\}$ and $\{\lambda(t) : t \in \mathbb{R}\}$. Since $\pi(\alpha_t(X)) = \beta_t(\pi(X))$ for $X \in \mathcal{M}$ and $t \in \mathbb{R}$, \mathcal{A} is a subalgebra of $H^\infty(\beta)$. It is noted that $\mathcal{A} + \mathcal{A}^*$ is σ-weakly dense in $\mathcal{M} \rtimes_\alpha \mathbb{R}$ since $H^\infty(\alpha) + H^\infty(\alpha)^*$ is σ-weakly dense by Theorem 3.15 in [14].

Lemma 5. $H^\infty_0(\beta) \subset \mathcal{A}$.

Proof. We know that $H^\infty_0(\beta)$ is the σ-weak closure of the set $\{X \in \mathcal{M} \rtimes_\alpha \mathbb{R} : sp_{\beta}(X) \text{ is compact in } (0, +\infty)\}$ by Lemma 2.8 in [15]. Let $X \in \mathcal{M} \rtimes_\alpha \mathbb{R}$ be such that $sp_{\beta}(X)$ is compact in $(0, +\infty)$. Choose $f \in L^1(\mathbb{R})$ with compactly supported Fourier transform such that support $supp\hat{f}$ of \hat{f} is in $(0, \infty)$ and such that $f_X = X$. Note that since $\mathcal{A} + \mathcal{A}^*$ is σ-weakly dense in $\mathcal{M} \rtimes_\alpha \mathbb{R}$, there are nets $\{A_i\}$, $\{B_i\}$ in \mathcal{A} such that $lim_{i}(A_i + B_i^*) = X$ σ-weakly. It follows that $lim_{i}(f * A_i + f * B_i^*) = f_X = X$. However, we have $f * B_i^* = 0$ since $sp_{\beta}(f * B_i^*) \subset supp\hat{f} \cap sp_{\beta}(B_i^*) = \emptyset$. Note that A is $\{\beta_t\}_{t \in \mathbb{R}}$ invariant, it follows that $f * A_i \in \mathcal{A}$ and then $X \in \mathcal{A}$. The proof is complete. □
The next result might be known, but we were unable to find a reference for it.

Lemma 6. If \mathcal{M} is \mathbb{R}-finite relative to α, then $\mathcal{M} \rtimes_\alpha \mathbb{R}$ is \mathbb{R}-finite relative to β.

Proof. By considering a covariant representation of the pair (\mathcal{M}, α) in the sense of Definition 2.5 and Proposition 2.6 in [14], we may assume that $\alpha = \{\alpha_t\}_{t \in \mathbb{R}}$ is implemented by a continuous unitary representation $t \mapsto U_t$ of \mathbb{R} on \mathcal{H}, that is, $\alpha_t(X) = U_tXU_t^*$ for all $x \in \mathcal{M}$. Then by Definition 13.2.6 in [12], the crossed product $\mathcal{M} \rtimes_\alpha \mathbb{R}$ is a von Neumann algebra on $L^2(\mathbb{R}, \mathcal{H})$ ($= \mathcal{H} \otimes L^2(\mathbb{R})$) generated by $\{A \otimes I : a \in \mathcal{M}\}$ and $\{U_t \otimes I : t \in \mathbb{R}\}$, where U_t is the shift operator on $L^2(\mathbb{R})$ defined by $(l_t f)(s) = f(t+s)$, $t, s \in \mathbb{R}$, $f \in L^2(\mathbb{R})$. It is known that β is implemented by $\{U_t \otimes I : t \in \mathbb{R}\}$.

Since $L^2(\mathbb{R})$ is separable, there is an orthonormal basis $\{e_n : n = 1, 2, \cdots\}$ of $L^2(\mathbb{R})$. If we define $\mu(T) = \sum_{n=1}^{\infty} \frac{1}{\|e_n\|}(Te_n, e_n)$, $\forall T \in \mathcal{B}(L^2(\mathbb{R}))$, then μ is a faithful normal state of $\mathcal{B}(L^2(\mathbb{R}))$. Let ϕ be a faithful normal state of \mathcal{M} such that $\phi \circ \alpha_t = \phi$ for all $t \in \mathbb{R}$. It follows from Proposition 11.2.7 in [12] that $\phi \otimes \mu$ is a normal state on $\mathcal{M} \otimes \mathcal{B}(L^2(\mathbb{R})) \supset \mathcal{M} \rtimes_\alpha \mathbb{R}$. We claim that $\phi \otimes \mu$ is faithful. In fact, we way identify $\mathcal{M} \otimes \mathcal{B}(L^2(\mathbb{R}))$ with $\{A_{ij} \in \mathcal{B}(\mathcal{H} \otimes L^2(\mathbb{R})) : A_{ij} \in \mathcal{M}\}$ by Remark 11.2.3 in [12]. For any $(A_{ij}) \in \mathcal{M} \otimes \mathcal{B}(L^2(\mathbb{R}))$, we define $\psi((A_{ij})) = \sum_{n=1}^{\infty} \frac{1}{\|e_n\|}\phi(A_{nn})$. Then ψ is a faithful normal state on $\mathcal{M} \otimes \mathcal{B}(L^2(\mathbb{R}))$. Since for any $A \in \mathcal{M}$ and $T \in \mathcal{B}(L^2(\mathbb{R}))$, $A \otimes T$ identifies with $(t_{ij} A)$, where $t_{ij} = (Te_{ij}, e_i)$ for all $i, j = 1, 2, \cdots$, $\phi \otimes \mu(A \otimes T) = \phi(A)\mu(T) = \psi((t_{ij} A))$. It follows that $\phi \otimes \mu = \psi$ and then $\phi \otimes \mu$ is faithful.

We note that if $A \in \mathcal{M}$, then $\phi \otimes \mu(\beta_s(A \otimes I)) = \phi \otimes \mu(A \otimes I)$ for all $s \in \mathbb{R}$. On the other hand, $\beta_t(U_s \otimes I_s) = U_s \otimes I_s$; then $\phi \otimes \mu(\beta_t(U_s \otimes I_s)) = \phi \otimes \mu(U_s \otimes I_s)$, $s, t \in \mathbb{R}$. We now have that $\phi \otimes \mu$ is a faithful normal state on $\mathcal{M} \rtimes_\alpha \mathbb{R}$ such that $\phi \otimes \mu \circ \beta_s = \phi \otimes \mu$ for all $s \in \mathbb{R}$. It follows that $\mathcal{M} \rtimes_\alpha \mathbb{R}$ is \mathbb{R}-finite relative to β. The proof is complete. \hfill \Box

Proof. We first assume that \mathcal{M} is \mathbb{R}-finite relative to $\{\alpha_t\}_{t \in \mathbb{R}}$. Then there is a faithful normal expectation Φ from \mathcal{M} onto \mathcal{D}. Now there is a faithful normal expectation Ψ from $\mathcal{M} \rtimes_\alpha \mathbb{R}$ onto \mathcal{N} such that $\Psi(\pi(A)) = \pi(\Phi(A))$ for all $A \in \mathcal{M}$ by Lemma 6, where \mathcal{N} is the fixed point algebra of β. We have that \mathcal{N} is generated by $\{\pi(A) : A \in \mathcal{D}\}$ and $\{\lambda(t) : t \in \mathbb{R}\}$. In fact, take any $D \in \mathcal{N}$. There is a net $A_i = \sum_{i=1}^{n_i} \pi(X_{i,j}^i)\lambda(t_{i,j}^i)$ such that $\lim_{i} A_i = D$ σ-weakly, where $X_{i,j}^i \in \mathcal{M}$ and $t_{i,j}^i \in \mathbb{R}$. We then have

$$D = \Psi(D) = \lim_i \Psi(A_i) = \lim_i \sum_{j=1}^{n_i} \Psi(\pi(X_{i,j}^i))\lambda(t_{i,j}^i).$$

It now follows that $\mathcal{N} = H^\infty(\beta) \cap H^\infty(\beta)^* = A \cap A^*$. We know that $H^\infty_0(\beta) \subset A$ by Lemma 5. Thus $H^\infty(\beta) = \mathcal{N} + H^\infty_0(\beta) \subset A$ and therefore $H^\infty(\beta) = A$.

For the general case, there is a projection E in the center of \mathcal{D} such that $E \mathcal{M} E$ is \mathbb{R}-finite, while $(I-E)\mathcal{M}(I-E)$ is completely non-\mathbb{R}-finite relative to α from Remark
3.4 in [4]. We note that in this case \(\pi(E)({\mathcal M} \times_{\alpha} \mathbb{R})\pi(E) \) is \(\mathbb{R} \)-finite by Lemma 6, and \((I - \pi(E))({\mathcal M} \times_{\alpha} \mathbb{R})(I - \pi(E))\) is completely non-\(\mathbb{R} \)-finite relative to \(\beta \). By considering \(\alpha \) restricted on \(EME \), we have \(\pi(E)H^\infty(\beta)\pi(E) \subset \pi(E)\mathcal{A}\pi(E) \subset \mathcal{A} \) by Lemma 6 again. On the other hand, if we consider \(\alpha \) on \((I - E)\mathcal{M}(I - E)\), then we have \((I - \pi(E))H^\infty(\beta)(I - \pi(E)) = (I - \pi(E))H^\infty_0(\beta)(I - \pi(E)) \subset H^\infty_0(\beta)\). In particular, \(I - \pi(E) \in H^\infty_0(\beta) \) and then \((I - \pi(E))H^\infty(\beta) + H^\infty(\beta)(I - \pi(E)) \subset H^\infty_0(\beta) \subset \mathcal{A} \). Thus we have \(H^\infty(\beta) \subset \mathcal{A} \), and the proof is complete.

Theorem 2. The commutant of \(H^\infty(\alpha) \) is self-adjoint, that is, \((H^\infty(\alpha))^* = \mathcal{M}'\).

Proof. Let \(\beta = \{\beta_t\}_{t \in \mathbb{R}} \) be as above. We recall that \(H^\infty(\beta) \) is a nest subalgebra of \(\mathcal{M} \times_{\alpha} \mathbb{R} \). Then the commutant of \(H^\infty(\beta) \) is self-adjoint by Theorem 2.5 in [6]. Let \(X \in (H^\infty(\alpha))^* \). Define an operator \(\hat{X} \) on \(L^2(\mathbb{R}, \mathcal{H}) \) by

\[
(\hat{X}\xi)(t) = X\xi(t), \quad \forall \xi \in L^2(\mathbb{R}, \mathcal{H}).
\]

Then it is trivial that \(\hat{X} \) is bounded. We claim that \(\hat{X} \in (H^\infty(\beta))^* \). By Lemma 7, it is sufficient to show that \(X \in \mathcal{A}' \). For any \(Y \in H^\infty(\alpha) \) we have

\[
(\hat{X}\pi(Y)\xi)(t) = X\alpha_{-t}(Y)\xi(t) = \alpha_{-t}(Y)X\xi(t) = \alpha_{-t}(Y)(\hat{X}\xi)(t) = (\pi(Y)\hat{X}\xi)(t).
\]

Then \(\hat{X}\pi(Y) = \pi(Y)\hat{X} \). On the other hand, for any \(s \in \mathbb{R} \),

\[
(\hat{X}\lambda(s)\xi)(t) = (\hat{X}\xi)(t - s) = \lambda(s)(\hat{X}\xi)(t) = (\lambda(s)\hat{X})(t).
\]

It follows that \(\lambda(s)\hat{X} = \hat{X}\lambda(s) \) for any \(s \in \mathbb{R} \). We thus have \(\hat{X} \in (H^\infty(\beta))^* \). By Theorem 2.5 in [6], \((\hat{X})^* \in (H^\infty(\beta))^* \). In particular, \((\hat{X})^* \) commutes with \(\pi(Y) \) for any \(Y \in H^\infty(\alpha) \). Note that \((\hat{X})^* = (X^*) \). Given \(u \in \mathcal{H} \), let \(f \) be a continuous function in \(L^2(\mathbb{R}) \) such that \(f(0) = 1 \) and let \(\xi(t) = f(t)u \). Then \(\xi \in L^2(\mathbb{R}, \mathcal{H}) \) and

\[
((X^*)\pi(Y)\xi)(t) = X^*\alpha_{-t}(Y)\xi(t) = X^*\alpha_{-t}(Y)f(t)u = (\pi(Y)X^*)\xi(t) = \alpha_{-t}(Y)X^*f(t)u.
\]

When \(t = 0 \), we have \(X^*Yu = YX^*u \) for all \(u \in \mathcal{H} \). Hence \(X^* \in (H^\infty(\alpha))^* \) and \((H^\infty(\alpha))^* = \mathcal{M}' \). The proof is complete.

Remark 1. We know that if \(\mathcal{A} \) is either a subdiagonal algebra or an analytic operator algebra of \(\mathcal{M} \), then we have that \(\mathcal{A} + \mathcal{A}^* \) is \(\sigma \)-weakly dense in \(\mathcal{M} \). However, if we assume that a subalgebra only satisfies this condition, it may not follow that the algebraic commutant is self-adjoint. For example, from Corollary 1.4 in [1], we know that there is a subalgebra \(\mathcal{A} \) of \(\mathcal{B}(\mathcal{H}) \) such that \(\mathcal{A} + \mathcal{A}^* \) is \(\sigma \)-weakly dense in \(\mathcal{B}(\mathcal{H}) \) and such that \(\mathcal{A} \) is similar to a proper von Neumann subalgebra of \(\mathcal{B}(\mathcal{H}) \). It easily follows that the algebraic commutant of \(\mathcal{A} \) is not self-adjoint.

Remark 2. We considered two classes of non-self-adjoint operator algebras, subdiagonal algebras and analytic operator algebras determined by flows in von Neumann algebras. If \(\mathcal{H} \) is finite dimensional, we know that these two classes of operator algebras are nest subalgebras of von Neumann algebras (cf. Theorem 2.1 in [11]). However, if \(\mathcal{H} \) is infinite dimensional, these two classes are different. The analytic operator algebra \(H^\infty(\alpha) \) determined by a flow \(\alpha \) is a maximal subdiagonal algebra if and only if the flow \(\alpha \) is \(\mathbb{R} \)-finite. There are subdiagonal algebras which are not
analytic operator algebras determined by any flows. We refer the readers to see some examples given in [8].

Acknowledgement

The authors thank the referee for the valuable comments and suggestions and for pointing out reference [15] which was useful for the revision of this paper.

References

College of Mathematics and Information Science, Shaanxi Normal University, Xian, 710062, People’s Republic of China
E-mail address: gxji@snnu.edu.cn

Department of General Science, Tsuruoka National College of Technology, Tsuruoka, 997-8511, Japan
E-mail address: ohwada@tsuruoka-nct.ac.jp

Department of Mathematics, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
E-mail address: saito@math.sc.niigata-u.ac.jp