Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Beurling-Nevanlinna inequality for subfunctions of the stationary Schrödinger operator
HTML articles powered by AMS MathViewer

by Alexander Kheyfits PDF
Proc. Amer. Math. Soc. 134 (2006), 2943-2950

Abstract:

The classical Beurling-Nevanlinna upper bound for subharmonic functions is extended to subsolutions of the stationary Schrödinger equation.
References
  • Albert Baernstein II and B. A. Taylor, Spherical rearrangements, subharmonic functions, and $^*$-functions in $n$-space, Duke Math. J. 43 (1976), no. 2, 245–268. MR 402083
  • Beurling, A., Études sur un problème de majoration. Thèse, Uppsala, 1933.
  • Bonic, R. A., Hajian, G. V., Cranford, E., and Krantz, S., Freshman Calculus. D. C. Heath and Co. Lexington, MA, 1971.
  • Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
  • W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
  • Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
  • A. I. Kheĭfits, The Riesz-Herglotz formula for generalized harmonic functions and their boundary behavior, Dokl. Akad. Nauk SSSR 321 (1991), no. 2, 263–265 (Russian); English transl., Soviet Math. Dokl. 44 (1992), no. 3, 688–691. MR 1153552
  • B. Ya. Levin and A. I. Kheĭfits, Asymptotic behavior of subfunctions of the Schrödinger operator in an $n$-dimensional cone, Dokl. Akad. Nauk SSSR 301 (1988), no. 3, 540–543 (Russian); English transl., Soviet Math. Dokl. 38 (1989), no. 1, 109–112. MR 968495
  • Levin, B. Ya. and Kheyfits, A., Asymptotic behavior of subfunctions of the stationary Schrödinger operator. Preprint, http://arXiv/abs/math/021132896, 2002, 96 pp.
  • Nevanlinna, R., Über eine Minimumaufgabe in der Theorie der konformen Abbildung. Ges. Wiss. Göttingen, Math. Phys. Kl. 37(1933), 103-115.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31A05, 30C80, 35J10
  • Retrieve articles in all journals with MSC (2000): 31A05, 30C80, 35J10
Additional Information
  • Alexander Kheyfits
  • Affiliation: Graduate School and Bronx Community College of The City University of New York, Bronx, New York 10453
  • Email: akheyfits@gc.cuny.edu
  • Received by editor(s): May 19, 2004
  • Received by editor(s) in revised form: April 26, 2005
  • Published electronically: April 11, 2006

  • Dedicated: To Iossif V. Ostrovskii on the occasion of his 70th Anniversary
  • Communicated by: Juha M. Heinonen
  • © Copyright 2006 by Alexander I. Kheyfits
  • Journal: Proc. Amer. Math. Soc. 134 (2006), 2943-2950
  • MSC (2000): Primary 31A05, 30C80, 35J10
  • DOI: https://doi.org/10.1090/S0002-9939-06-08333-X
  • MathSciNet review: 2231618