The real rank zero property of crossed product
HTML articles powered by AMS MathViewer
- by Xiaochun Fang
- Proc. Amer. Math. Soc. 134 (2006), 3015-3024
- DOI: https://doi.org/10.1090/S0002-9939-06-08357-2
- Published electronically: May 8, 2006
- PDF | Request permission
Abstract:
Let $A$ be a unital $C^*$-algebra, and let $(A, G, \alpha )$ be a $C^*$-dynamical system with $G$ abelian and discrete. In this paper, we introduce the continuous affine map $R$ from the trace state space $T(A\times _{\alpha }G)$ of the crossed product $A\times _{\alpha }G$ to the $\alpha$-invariant trace state space $T(A)_{\alpha ^*}$ of $A$. If $A\times _{\alpha }G$ is of real rank zero and $\hat {G}$ is connected, we have proved that $R$ is homeomorphic. Conversely, if $R$ is homeomorphic, we also get some properties and real rank zero characterization of $A\times _{\alpha }G$. In particular, in that case, $A\times _{\alpha }G$ is of real rank zero if and only if each unitary element in $A\times _{\alpha }G$ with the form $u_{_A}\prod _{i=1}^n x_i^*y_i^*x_iy_i$ can be approximated by the unitary elements in $A\times _{\alpha }G$ with finite spectrum, where $u_{_A}\in U_0(A)$, $x_i,y_i\in C_c(G,A)\cap U_0(A\times _{\alpha }G)$, and if moreover $A$ is a unital inductive limit of the direct sums of non-elementary simple $C^*$-algebras of real rank zero, then the $u_{_A}$ above can be cancelled.References
- P. de la Harpe and G. Skandalis, Déterminant associé à une trace sur une algébre de Banach, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 1, 241–260 (French, with English summary). MR 743629, DOI 10.5802/aif.958
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- Ola Bratteli, David E. Evans, and Akitaka Kishimoto, The Rohlin property for quasi-free automorphisms of the fermion algebra, Proc. London Math. Soc. (3) 71 (1995), no. 3, 675–694. MR 1347409, DOI 10.1112/plms/s3-71.3.675
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- George A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219. MR 1241132, DOI 10.1515/crll.1993.443.179
- Elliott, G. A., Gong, G. and Li, L., On the Classification of Simple Inductive Limit $C^*$-algebras, II: The Isomorphism Theorem, preprint.
- George A. Elliott and Xiaochun Fang, Simple inductive limits of $C^\ast$-algebras with building blocks from spheres of odd dimension, Operator algebras and operator theory (Shanghai, 1997) Contemp. Math., vol. 228, Amer. Math. Soc., Providence, RI, 1998, pp. 79–86. MR 1667655, DOI 10.1090/conm/228/03282
- Xiaochun Fang, The simplicity and real rank zero property of the inductive limit of continuous trace $C^\ast$-algebras, Analysis (Munich) 19 (1999), no. 4, 377–389. MR 1743530, DOI 10.1524/anly.1999.19.4.377
- Akitaka Kishimoto, The Rohlin property for automorphisms of UHF algebras, J. Reine Angew. Math. 465 (1995), 183–196. MR 1344136, DOI 10.1515/crll.1995.465.183
- Huaxin Lin, Almost multiplicative morphisms and some applications, J. Operator Theory 37 (1997), no. 1, 121–154. MR 1438204
- Huaxin Lin, An introduction to the classification of amenable $C^*$-algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1884366, DOI 10.1142/9789812799883
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Mikael Rørdam, Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math. 440 (1993), 175–200. MR 1225963, DOI 10.1515/crll.1993.440.175
- Klaus Thomsen, Diagonalization in inductive limits of circle algebras, J. Operator Theory 27 (1992), no. 2, 325–340. MR 1249649
- Klaus Thomsen, Traces, unitary characters and crossed products by $\textbf {Z}$, Publ. Res. Inst. Math. Sci. 31 (1995), no. 6, 1011–1029. MR 1382564, DOI 10.2977/prims/1195163594
- Jesper Villadsen, Simple $C^*$-algebras with perforation, J. Funct. Anal. 154 (1998), no. 1, 110–116. MR 1616504, DOI 10.1006/jfan.1997.3168
- Shuang Zhang, Matricial structure and homotopy type of simple $C^*$-algebras with real rank zero, J. Operator Theory 26 (1991), no. 2, 283–312. MR 1225518
- Shuang Zhang, On the homotopy type of the unitary group and the Grassmann space of purely infinite simple $C^*$-algebras, $K$-Theory 24 (2001), no. 3, 203–225. MR 1876798, DOI 10.1023/A:1013392615189
Bibliographic Information
- Xiaochun Fang
- Affiliation: Department of Applied Mathematics, Tongji University, Shanghai, 200092, People’s Republic of China
- Email: xfang@mail.tongji.edu.cn
- Received by editor(s): January 3, 2005
- Received by editor(s) in revised form: May 9, 2005
- Published electronically: May 8, 2006
- Additional Notes: This article was supported by the National Natural Science Foundation of China (10271090).
- Communicated by: David R. Larson
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 3015-3024
- MSC (2000): Primary 46L05; Secondary 46L35, 46L40
- DOI: https://doi.org/10.1090/S0002-9939-06-08357-2
- MathSciNet review: 2231627