Counting abelian group structures
HTML articles powered by AMS MathViewer
- by Francis Clarke
- Proc. Amer. Math. Soc. 134 (2006), 2795-2799
- DOI: https://doi.org/10.1090/S0002-9939-06-08396-1
- Published electronically: April 10, 2006
- PDF | Request permission
Abstract:
A bijective proof is given of a recurrence for the function counting the number of binary operations which endow a finite set with the structure of an abelian group. The proof depends on a lemma in “labelled homological algebra” and provides a simple route to a “curious result” of Philip Hall.References
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440
- Euler, Leonhard, Introductio in analysin infinitorum, 1, Lausanne, 1748, Opera Omnia 8 B. G. Teubner, Geneva, 1922.
- Hall, Philip, A partition formula connected with abelian groups, Comm. Math. Helv. 11 (1938/39), 126–129.
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879, DOI 10.1007/978-3-642-62029-4
- I. G. Macdonald, The algebra of partitions, Group theory, Academic Press, London, 1984, pp. 315–333. MR 780573
- Avinoam Mann, Philip Hall’s “rather curious” formula for abelian $p$-groups. part B, Israel J. Math. 96 (1996), no. part B, 445–448. MR 1433700, DOI 10.1007/BF02785528
- Tomoyuki Yoshida, P. Hall’s strange formula for abelian $p$-groups, Osaka J. Math. 29 (1992), no. 3, 421–431. MR 1181111
- Tomoyuki Yoshida, Categorical aspects of generating functions. I. Exponential formulas and Krull-Schmidt categories, J. Algebra 240 (2001), no. 1, 40–82. MR 1830543, DOI 10.1006/jabr.2000.8602
Bibliographic Information
- Francis Clarke
- Affiliation: Department of Mathematics, University of Wales Swansea, Swansea SA2 8PP, Wales
- Email: F.Clarke@Swansea.ac.uk
- Received by editor(s): April 15, 2005
- Published electronically: April 10, 2006
- Communicated by: Jonathan I. Hall
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 2795-2799
- MSC (2000): Primary 20K01; Secondary 20D60, 20K35, 20K40
- DOI: https://doi.org/10.1090/S0002-9939-06-08396-1
- MathSciNet review: 2231600